Most Recent Links

Follow us on Facebook or subscribe to our mailing list, to receive news updates. Learn more.


Links 3621 - 3640 of 29528

Etelka Lehoczky Like any good story about a scientific discovery, Walter A. Brown's account of the history of lithium features plenty of improvisation, conjecture and straight-up kismet. Unlike many such stories, though, it also features a fair share of personal bias, senseless puttering and random speculation — on part of these scientific researchers. Brown, a practicing psychiatrist and university professor of more than 40 years, seems to have been drawn to write Lithium: A Doctor, A Drug and a Breakthrough as much because of lithium's fluky history and overlooked importance (for many years, he argues, it was "the Cinderella of psychiatric drugs") as by the profound impact it's had on countless sufferers of bipolar disorder and depression. Lithium is a homage, not just to a drug, but to the renegade side of science. Its heroes are researchers scattered around the globe, short on funding and frequently unaware of each other's work, without whom a commonly available substance would never have been recognized as a treatment for one of the most baffling psychiatric illnesses. By celebrating these men, Brown hopes to do a lot more than simply raise awareness about an underappreciated substance. He aims to demolish what remains of the myth that scientific progress is driven by rigorous dispassion. The story of lithium's use in medicine is certainly colorful, as is the history of the illness it's become known for. Brown doesn't stint on either tale. He goes all the way back to the first century to find a would-be description of manic depression by the Greek doctor Aretaeus of Cappadocia. These patients, Aretaeus wrote, "'laugh, play, dance night and day, and sometimes go openly to the market crowned, as if victors in some contest of skill,'" only to become "'torpid, dull and sorrowful.'" © 2019 npr

Keyword: Schizophrenia
Link ID: 26502 - Posted: 08.15.2019

By Sheila Kaplan Nearly three dozen young people have been hospitalized around the country in recent weeks for severe respiratory problems after vaping either nicotine or marijuana, stumping doctors treating them. The Illinois, Minnesota and Wisconsin public health departments are investigating these cases and at least 20 additional emergency admissions that doctors suspect are related to vaping some substance, possibly even illegal street drugs or adulterated liquids laced with T.H.C., the ingredient that produces marijuana’s high. There are also cases in California, which appear to be associated with vaping cannabis or cannabidiol oil. Most of the patients were having difficulty breathing when they arrived at the hospital. Some patients also reported chest pain, vomiting and other ailments. The cases have ranged in severity, with some patients suffering severe lung damage that required weeks of treatment in the intensive care units. Each of the patients reported using e-cigarettes or other vaping devices in the weeks leading up to the emergency. But officials are not yet clear whether vaping caused the injuries, and if so, what ingredient in the e-cigarette or vaping systems was responsible. “We know the children have been injured. We don’t yet know the causative agent,” said Dr. David D. Gummin, medical director of the Wisconsin Poison Center, and professor and chief of medical toxicology at the Medical College of Wisconsin. “We have no leads pointing to a specific substance other than those that are associated with smoking or vaping.” Initially, Dr. Gummin said, doctors suspected that the patients were suffering from an infectious disease. But the patients’ failure to respond to antibiotics led the doctors to believe they had been harmed by a toxic substance. A common practice among their patients was vaping. © 2019 The New York Times Company

Keyword: Drug Abuse
Link ID: 26501 - Posted: 08.15.2019

Patti Neighmond Most children enrolled in Medicaid who get a diagnosis of attention deficit hyperactivity disorder don't get timely or appropriate treatment afterward. That's the conclusion of a report published Thursday by a federal watchdog agency, the Department of Health and Human Services' Office of Inspector General. "Nationwide, there were 500,000 Medicaid-enrolled children newly prescribed an ADHD medication who did not receive any timely follow-up care," says Brian Whitley, a regional inspector general with OIG. The report analyzed Medicaid claims data from 2014 and 2015. Those kids didn't see a health care provider regarding their ADHD within a month of being prescribed the medication, though pediatric guidelines recommend that, he says. And one in five of those children didn't get the two additional check-ins with a doctor they should get within a year. "That's a long time to be on powerful medications without a practitioner checking for side effects or to see how well the medication is working," Whitley says. Additionally, according to the OIG report, "Nearly half of Medicaid-enrolled children who were newly prescribed an ADHD medication did not receive behavioral therapy," though that, too, is recommended by pediatricians. Elizabeth Cavey, who lives with her family in Arlington, Va., knows just how important it is to get a child with ADHD accurately diagnosed and treated. Kindergarten, Cavey says, was a disaster for her daughter. "She was constantly being reprimanded and forced to sit still," Cavey recalls. "And she's a bright child, but she kept falling further and further behind in learning letters and language, because she could not concentrate." © 2019 npr

Keyword: ADHD; Development of the Brain
Link ID: 26500 - Posted: 08.15.2019

By Joseph D. Stern, M.D. My patient had arrived from another hospital in the middle of the night. He was a wiry older man, restless but alert. He had a blood clot compressing the dominant hemisphere of his brain. He did not speak or move the right side of his body but fidgeted with his left hand and leg: pulling at his IV; removing his oxygen tubing and the ECG contacts pasted to his chest. He did not seem to understand what was happening and could neither assent to nor refuse the surgery I was recommending. Yet just hours earlier, he had been his normal self. His wife, whom I later learned was developing dementia, accompanied him in the ambulance. She was frail, thin and appeared disheveled and confused. She knew little about his medications and medical problems and didn’t know if he was on blood thinners. Still, given his rapid decline over a few hours, I took him to surgery. The craniotomy went well and he seemed to recover smoothly. But my patient made little improvement over the next two days. A repeat CT scan showed that the blood I had removed had re-accumulated. This is a known complication of a craniotomy for subdural hematoma. Still, it felt like a personal failure. The easiest thing to do would have been to take my patient back to surgery. But was it the right thing to do? Two weeks earlier I had attended a conference on palliative care held by the Archdiocese of Boston. Dr. Mary Buss, a hematologist/oncologist and chief of palliative care at Beth Israel Deaconess Medical Center, related some recent research on moral distress in neurosurgery she had conducted with Dr. Stephen Miranda. Dr. Miranda, who was then a medical student and is now a neurosurgical resident at the University of Pennsylvania, interviewed neurosurgery residents about the decision to operate on an elderly patient with early dementia and on blood thinners with a subdural hematoma and a poor neurological exam. © 2019 The New York Times Company

Keyword: Brain Injury/Concussion; Stroke
Link ID: 26499 - Posted: 08.15.2019

Anna Moore On a lazy Sunday morning in May last year, Isobel Lloyd was at her boyfriend’s house, having coffee with his mum. The conversation had worked around to Lloyd’s grandma – her mother’s mother – who’d died in her 50s, when Lloyd was very young. Lloyd’s only memories of her had been hospice visits where her grandma lay bedbound, unable to talk or swallow, with no control over how her body moved. Lloyd had forgotten the name of her grandma’s disease, hadn’t thought about it in years. Like most 20-year-olds, she was future-focused – a student from Yorkshire, keen on her studies, in love with her boyfriend of four years. Sitting in his family kitchen, they began reeling off degenerative diseases. Motor neurone. Multiple sclerosis. Parkinson’s. Alzheimer’s. Then finally Huntington’s disease (HD). In a flash of recognition, Lloyd knew that was the one her grandma had. “It just clicked,” she says. “I Googled it on my phone – and that’s when I read that it was genetic. My mum had a 50% risk of getting it – and if she did, I had a 50% risk, too.” She didn’t tell her boyfriend’s mother what she’d just learned, “But I felt the colour rush out of my face,” says Lloyd, an only child. “I thought, ‘No way, that can’t be true.’ I was 20 years old and no one had told me?” In fact, that’s not so unusual. Secrecy, evasion and lies are frequent features for families grappling with genetic disease. Whether it’s HD, a breast cancer gene, inheritable bowel cancer, early-onset Alzheimer’s, it’s not uncommon for younger generations to stumble upon their inheritance by noticing patterns, asking questions. By then, they’re faced not just with their frightening at-risk status, but also anger at all those years in the dark. © 2019 Guardian News & Media Limited

Keyword: Huntingtons; Genes & Behavior
Link ID: 26498 - Posted: 08.15.2019

By Tiffany Hsu Scientists at Virginia Commonwealth University in Richmond, Va., were concerned when a young man contacted their department last year complaining of a heart-pounding, hallucinogenic high he had neither expected nor wanted to have. The team, led by the forensic toxicologist Michelle R. Peace, had published a study about mysterious ingredients in vaping liquids. That’s how the man, a graduate student Dr. Peace declined to name, knew to tell it about his experience. He said he had vaped a liquid, from a company called Diamond CBD, that contained CBD, or cannabidiol. A compound reputed to have soothing properties, CBD has been marketed by the fast-growing cannabis industry as an ingredient in sleeping masks, kombucha, Carl’s Jr. burgers and Martha Stewart-backed dog treats. It is not supposed to cause a psychoactive experience. Dr. Peace decided to run some tests of Diamond CBD vaping liquids, some from the graduate student and some bought from the manufacturer. In four of nine samples, all marketed on the company’s website as 100 percent natural, her lab discovered a synthetic compound, 5F-ADB. That ingredient has been linked by the Drug Enforcement Administration to anxiety, convulsions, psychosis, hospitalization and death. Diamond CBD has often promoted its products as health aids meant to “help your body to heal and recover” and “to make you feel the best version of yourself.” The company’s parent, PotNetwork Holdings, said in a statement that independent tests did not show “any unnatural or improper derivative.” The company said it planned to run more tests on its products and materials and would issue a recall if it found any problems. The efforts of cannabis companies to go mainstream could be hampered by CBD advertising that depends on misleading or unproven claims, entrepreneurs and researchers said. Dr. Peace compared the marketing efforts of some companies to snake-oil scams in the 1800s, “when guys in wagons were selling sham tinctures in glass bottles.” © 2019 The New York Times Company

Keyword: Drug Abuse; Stress
Link ID: 26497 - Posted: 08.14.2019

­­­In a nationwide study, researchers used magnetic resonance imaging (MRI) to scan the brains of hundreds of participants in the National Institutes of Health’s Systolic Blood Pressure Intervention Trial (SPRINT) and found that intensively controlling a person’s blood pressure was more effective at slowing the accumulation of white matter lesions than standard treatment of high blood pressure. The results complement a previous study published by the same research group which showed that intensive treatment significantly lowered the chances that participants developed mild cognitive impairment. “These initial results support a growing body of evidence suggesting that controlling blood pressure may not only reduce the risk of stroke and heart disease but also of age-related cognitive loss,” said Walter J. Koroshetz, M.D., director of the NIH’s National Institute of Neurological Disorders and Stroke (NINDS). “I strongly urge people to know your blood pressure and discuss with your doctors how to optimize control. It may be a key to your future brain health.” Brain white matter is made up of billions of thin nerve fibers, called axons, that connect the neurons with each other. The fibers are covered by myelin, a white fatty coating that protects axons from injury and speeds the flow of electrical signals. White matter lesions, which appear bright white on MRI scans, represent an increase in water content and reflect a variety of changes deep inside the brain, including the thinning of myelin, increased glial cell reactions to injury, leaky brain blood vessels, or multiple strokes. These changes are associated with high blood pressure, or “hypertension”.

Keyword: Alzheimers
Link ID: 26496 - Posted: 08.14.2019

Todd Golde and Steven DeKosky Dr. Todd Golde is a co-founder of Lacerta Therapeutics, Inc. and serves on their scientific advisory board (SAB). He is on the SAB for Promis Neuroscience, Inc. In the past he has served, ad hoc, on SABs related to neurodegenerative disease programs for Eli Lilly, Novartis, Bristol Myers Squib, Abbvie, Lundbeck, Biogen and Pfizer. He is co-editor in chief of Alzheimer’s Research and Therapy for which he receives an honorarium. He has served on the medical and scientific advisory board for the Alzheimer’s Association. He serves as a scientific advisor and participates in grant reviews for BrightFocus Foundation and the American Federation for Aging Research. He is a co-inventor on multiple patents and patent applications relating to AD therapeutics. He currently receives funding from the NIH. Steven DeKosky receives grant funding from the National Institute of Aging, serves as a consultant for Amgen, Biogen, and Cognition Therapeutics, and serves as editor for dementia for Up-To-Date, a point-of-care electronic textbook. He has chaired study sections for the NIH, served on two NIH councils, for the National Center for Complementary and Alternative Medicine (now the National Center for Complementary and Integrative Health; NCCIH) and the Director's Council (Council of Councils). He has served on the board of the Alzheimer's Association and chaired their Medical and Scientific Advisory Council, as well as chairing the Medical and Scientific Advisory Panel of Alzheimer's Disease International. © 2010–2019, The Conversation US, Inc.

Keyword: Alzheimers
Link ID: 26495 - Posted: 08.14.2019

Meredith Fore A long-standing controversy in neuroscience centers on a simple question: How do neurons in the brain share information? Sure, it’s well-known that neurons are wired together by synapses and that when one of them fires, it sends an electrical signal to other neurons connected to it. But that simple model leaves a lot of unanswered questions—for example, where exactly in neurons’ firing is information stored? Resolving these questions could help us understand the physical nature of a thought. Two theories attempt to explain how neurons encode information: the rate code model and the temporal code model. In the rate code model, the rate at which neurons fire is the key feature. Count the number of spikes in a certain time interval, and that number gives you the information. In the temporal code model, the relative timing between firings matters more—information is stored in the specific pattern of intervals between spikes, vaguely like Morse code. But the temporal code model faces a difficult question: If a gap is "longer" or "shorter," it has to be longer or shorter relative to something. For the temporal code model to work, the brain needs to have a kind of metronome, a steady beat to allow the gaps between firings to hold meaning. Every computer has an internal clock to synchronize its activities across different chips. If the temporal code model is right, the brain should have something similar. Some neuroscientists posit that the clock is in the gamma rhythm, a semiregular oscillation of brain waves. But it doesn’t stay consistent. It can speed up or slow down depending on what a person experiences, such as a bright light. Such a fickle clock didn't seem like the full story for how neurons synchronize their signals, leading to ardent disagreements in the field about whether the gamma rhythm meant anything at all. © 2018 Condé Nast.

Keyword: Consciousness; Biological Rhythms
Link ID: 26494 - Posted: 08.13.2019

A new study analyzing samples from patients with and without acute flaccid myelitis (AFM) provides additional evidence for an association between the rare but often serious condition that causes muscle weakness and paralysis, and infection with non-polio enteroviruses. The National Institute of Allergy and Infectious Diseases (NIAID), part of the National Institutes of Health, funded the research, which was conducted by investigators at Columbia University’s Center for Infection and Immunity and investigators from the Centers for Disease Control and Prevention. The findings are reported in the online journal mBio. There have been 570 confirmed cases since CDC began tracking AFM in August 2014. AFM outbreaks were reported to the CDC in 2014, 2016 and 2018. AFM affects the spinal cord and is characterized by the sudden onset of muscle weakness in one or more limbs. Spikes in AFM cases, primarily in children, have coincided in time and location with outbreaks of EV-D68 and a related enterovirus, EV-A71. Both of these viruses typically cause mild respiratory illness from which most people recover fully. Despite the epidemiological link between enterovirus circulation and AFM cases, evidence of direct causality has not been found. The researchers first looked for direct evidence of enterovirus infection in the cerebrospinal fluid (CSF) of 13 children and one adult diagnosed with AFM in 2018. They also examined five CSF samples taken from people with other central nervous system diseases. The team used a new tool they developed called VirCapSeq-VERT, which can detect any viral genetic material that is at least 60% like that of any known vertebrate virus. They found enteroviral genetic material (EV-A71) in only the one adult AFM case and genetic material from another enterovirus (echovirus 25) in one of the non-AFM cases.

Keyword: Movement Disorders; Neuroimmunology
Link ID: 26493 - Posted: 08.13.2019

By Ryan P. Dalton Subject cDa29—well-known yet anonymous—resides somewhere in the north of England. You can almost see it: the peat stacks and old textile mills; the limestone and turf ruins where, on divine calling, Hadrian marked the northernmost reach of the Roman Empire. But even were you there, you wouldn’t see it the way cDa29 does. That’s because cDa29 is tetrachromatic: while most people see their world as a mix of three colors—red, green and blue—cDa29 sees hers in four. Difficult to imagine as that world may be for trichromats, your sense of smell provides access to an even richer world, one painted not in four colors but 400. You can almost smell it: the peat, the mills, the turf. How do your senses build these worlds? They begin with sensory “receptors,” which sit on the surfaces of cells and are activated by specific stimuli. In the case of vision, there are three color photoreceptors in your retina—activated by red, green or blue light. By keeping these receptors separated—such that no two photoreceptors occur together in one cell—your retina can keep track of what colors came from where. As a counterexample, you have a few dozen “bitter receptors” on your tongue, but each bitter taste cell contains several of them. This arrangement allows you to detect many different bitter compounds, but it does not help you distinguish between them. As these examples illustrate, you must both be able to detect a wide range of stimuli and to discriminate between those stimuli—and generally, your senses strike a balance between these two objectives. Ever the romantic, your sense of smell casts aside the suggestion of balance and optimizes for both detection and discrimination. Olfactory neurons in your nose have evolved some 400 odor receptors, and each neuron contains only one. Receptors are tuned to detect a few basic odors apiece: some detect geranium petals or pine needles, while others detect the by-products of putrefaction. To organize all this information, your olfactory neurons wire into an “olfactory map” on your brain’s olfactory bulb. Olfactory neurons are one of the few types of neurons that are born throughout your life, and each of the roughly 10,000 such neurons born each day in your nose subsequently wires into the olfactory map in your brain. © 2019 Scientific American

Keyword: Chemical Senses (Smell & Taste)
Link ID: 26492 - Posted: 08.13.2019

Laura Sanders A season of head hits left its mark on college football players’ brains, even when those hits didn’t cause concussions. Routine head bumps over the course of a season were linked to abnormal brain tissue in part of players’ brain stems, researchers report August 7 in Science Advances. It’s unclear if these brain stem changes affect mental performance, or whether the changes are permanent. But the study suggests that in addition to the big hits that cause concussions, these smaller knocks could cause trouble. During the 2011, 2012 and 2013 football seasons, a team led by researchers at the University of Rochester in New York recruited players from the university to participate in a study looking at head impacts and brain health. Each player wore an accelerometer in his helmet to capture the forces at play during all practices and games during a single season. The players also underwent pre- and post-season brain scans. A measure called fractional anisotropy let researchers estimate how well stretches of white matter brain tissue can carry neural signals, a key job of healthy brain tissue. The 38 players included in the study collectively took 19,128 hits. And by the end of their season, the players on average had lower measures of fractional anisotropy in their right midbrains — a part of the brain stem. These declines were more tightly linked to the number of hits that twisted heads, as opposed to direct head-on hits. Those rotational forces might be particularly damaging to brain tissue, a finding that fits with results from earlier studies, the researchers write. |© Society for Science & the Public 2000 - 2019.

Keyword: Brain Injury/Concussion
Link ID: 26491 - Posted: 08.13.2019

Laura Sanders The golf ball–sized chunk of brain is not cooperating. It’s thicker than usual, and bloodier. One side has a swath of tissue that looks, to my untrained eye, like gristle. Nick Dee, the neuroscientist charged with quickly cutting the chunk into neat pieces, confers with his colleagues. “We can trim off that ugliness on the side,” he says. The “ugliness” is the brain’s connective tissue called white matter. To produce useful slices for experiments, the brain tissue must be trimmed, superglued to a lipstick-sized base and then fed into a lab version of a deli slicer. But this difficult chunk isn’t cutting nicely. Dee and colleagues pull it off the base, trim it again and reglue. Half an hour earlier, this piece of neural tissue was tucked inside a 41-year-old woman’s head, on her left side, just above the ear. Surgeons removed the tissue to reach a deeper part of her brain thought to be causing severe seizures. Privacy rules prevent me from knowing much about her; I don’t know her name, much less her first memory, favorite meal or sense of humor. But within this piece of tissue, which the patient generously donated, are clues to how her brain — all of our brains, really — create the mind. Dee’s team is working fast because this piece of brain is alive. Some of the cells can still behave as if they are a part of a person’s brain, which means they hold enormous potential for scientists who want to understand how we remember, plan, behave and feel. After Dee and his team do their part, pieces of the woman’s brain will be whisked into the hands of eager scientists, where the cells will be photographed, zapped with electricity, relieved of their genetic material and even infected with viruses that make them glow green and red. © Society for Science & the Public 2000 - 2019

Keyword: Brain imaging; Evolution
Link ID: 26490 - Posted: 08.12.2019

By Susana Martinez-Conde If you’re older than forty, chances are that reading texts or playing with your smart phone is now harder than it used to be. Such difficulty with near focusing is usually the result of presbyopia, the hardening of the lens of the eye that starts to take place in middle age. From eyeglasses to refractive surgery, many available solutions allow GenXers and baby boomers to read small print and conduct other near-vision tasks to their hearts’ content. The problem is, one of the most prevalent treatments for presbyopia could make you less safe on the road. Broadly, people suffering from presbyopia can opt for eyeglasses, contact lenses or surgery. Eyeglasses include reading glasses (used for close-up vision only), as well as glasses with bifocal, multifocal or progressive lenses (which are worn all day and allow vision at a range of distances). Contact lens correction can work just like with eyeglasses, but it also offers an alternative solution for presbyopia, called monovision. In monovision, one eye is corrected for close-up viewing, and the other eye for long-distance viewing. Thus, at any distance (near or far), at least one eye offers clear vision even when the image from the other eye is blurred. Eventually, the brain learns to suppress the blurred images and rely on the crisp images only, so people can enjoy clear vision at all distances. Finally, those with presbyopia can opt for refractive eye surgery, including monovision LASIK, which typically corrects the nondominant eye for near vision while leaving the dominant eye able to see long distance. Among baby boomers, monovision is the most popular contact lens correction for presbyopia, and monovision LASIK is also on the rise for eligible people over the age of 40. Yet, according to new research by Johannes Burge, Victor Rodriguez-Lopez, and Carlos Dorronsoro at the University of Pennsylvania, monovision corrections could present previously unidentified safety concerns, especially while driving. The reason is related to a century-old illusion called the Pulfrich effect. © 2019 Scientific American

Keyword: Vision
Link ID: 26489 - Posted: 08.12.2019

By Jane E. Brody Early to bed, early to rise — a fine plan for a dairy farmer who has to get up long before dawn to milk the cows. But if you’re someone who works all day with stocks and clients and may want to enjoy an evening out now and then, it would be better not to be getting up at 2 a.m. and have to struggle to stay awake through dinner or a show. Such is the challenge faced by a friend who has what sleep specialists call an advanced sleep phase. Her biological sleep-wake cycle, or circadian rhythm, is out of sync with the demands of the modern world. My friend, who asked to remain anonymous, has always been an early riser, even as a teenager. Getting up at 5 was an advantage in high school — she never had to worry about being late. But as she aged, her nights kept getting shorter. Now at age 63 she’s ready to go to sleep before 9 p.m., but that rarely fits with the demands of her life. No matter how delayed her bedtime, she gets up by 4 in the morning — and sometimes as early as 1:30 — and can’t get back to sleep. She said that given her stimulating job as an investment products specialist, she’s not sleepy during the day, nor does she nap. Still, she’s concerned about her short nights, partly because she’s read that insufficient sleep — especially not enough REM sleep, when dreams occur — has been linked to a possible increased risk of Alzheimer’s disease. She knows that late dinners, especially with wine, contribute to her sleep problem. But it’s also likely that her lifelong dairy-farmer sleep pattern is programmed by her genes, not the result of unavoidable disruptions or unwise living habits. And, it seems, her early-to-sleep, early-to-wake rhythm may not be as extremely rare as has long been believed. In a new study in the journal Sleep by researchers in San Francisco, Salt Lake City and Madison, Wis., of more than 2,400 patients who visited a sleep clinic for complaints like sleep apnea or insomnia, a small number of them were found to have a previously unrecognized familial form of advanced sleep phase, a kind of permanent jet lag that the study showed often runs in families. © 2019 The New York Times Company

Keyword: Biological Rhythms; Genes & Behavior
Link ID: 26488 - Posted: 08.12.2019

Sacha Pfeiffer There's a new smell tingling tourists' noses in the Big Apple, far above the trash bag-lined sidewalks — and this scent is by design. Atop One World Trade Center, New York City's tallest building, a fragrance carrying hints of citrus, beech trees and red maples wafts through the glass-enclosed observatory deck. When the observatory commissioned the custom scent to diffuse through the floor's HVAC system, Managing Director Keith Douglas told the New York Times that he wanted it to elicit a "positive thought," and offer a "a subtle complement to the experience" of visiting the space. But not everyone is keen on the scent. One tourist described the smell as "sickly," according to the Times, which first documented the new aromatic experience in lower Manhattan. It's a marketing strategy businesses are increasingly deploying to lure customers into stores and entice them to stay longer. The smell of cinnamon fills Yankee Candle stores, Subway pumps a doughy bread scent through its vents. International Flavors & Fragrances, the same company that developed clothing chain Abercrombie & Fitch's notoriously pungent "Fierce" cologne, known to linger on clothes long after their purchase, designed One World's scent. "The quickest way to change somebody's mood or behavior is with smell," says Dr. Alan Hirsch, neurological director of the Smell and Taste Treatment and Research Foundation in Chicago. © 2019 npr

Keyword: Chemical Senses (Smell & Taste); Emotions
Link ID: 26487 - Posted: 08.12.2019

By Iliana Magra LONDON — On a spring afternoon last year, Neil Fraser was walking down the main shopping street in Aberdeen, a port city in northeastern Scotland, when something strange happened. The bacon-and-chicken sandwich he was halfway through eating suddenly vanished from his hand. The culprit? A hungry bird he hadn’t seen coming. “The sea gull flew in from behind me,” Mr. Fraser, a manager at the Old Schoolhouse pub in the city, said by phone on Wednesday. The bird knocked down his hand and, before he realized what was happening, it was all over: “The sandwich and the sea gull were both gone.” Aggressive gulls trying to snatch people’s food, and at times succeeding, have been a longstanding nuisance in Britain, and various solutions have been proposed over the years, including not feeding the birds, holding a stick or umbrella overhead and installing wires on roofs that they use for nesting. The Old Schoolhouse pub even reportedly offered customers water pistols to deflect the birds. Now, new research proposes a different approach: staring them down. A study published in the journal Biology Letters on Wednesday by the Royal Society, the world’s oldest continuous scientific society, suggested that making eye contact might be key to fending off herring gulls, a familiar sight in British seaside towns. The study, conducted late last year in coastal towns in Cornwall, in southwestern England, focused on that species, which are white-, gray- and black-feathered, with beaks of yellow and red. The researchers tried to test 74 birds by placing potato chips in front of an experimenter. Just 27 of the gulls bit the bait — a factor that the research team attributed to whether the experimenter was facing toward or away from the gull. © 2019 The New York Times Company

Keyword: Aggression; Evolution
Link ID: 26486 - Posted: 08.12.2019

By Sandra G. Boodman Galen Warden was lying in a hot bath after a punishing week at her demanding marketing job. Her neck and shoulders were, as usual, in knots, so Warden thought she’d expedite the relaxation that a restorative soak usually delivered by sliding under the water. When she sat up about 30 seconds later, Warden recalled, “it felt like my entire scalp was on fire.” Her face, neck and shoulders were unaffected, but her scalp felt as though it had been doused with acid. It would take nearly three months before the cause of Warden’s unusual symptom, which was repeatedly attributed to a tension headache, was revealed. During that time, the emergence of other symptoms failed to prompt the specialist treating her to reconsider her initial diagnosis. If anything, the new problems seemed to harden the doctor’s conviction that Warden’s problem was stress-related. Looking back, Warden said she is struck by what she characterizes as her medical naivete. "It's been a cautionary tale for my friends," she said. "I can't believe I kept going back to a well that was dry." Shocked by the fiery sensation engulfing her scalp, Warden turned on the shower and ran cool water over her head, frantically trying to think about what might have triggered it. She hadn’t rubbed her scalp hard or used a different shampoo or bath product. © 1996-2019 The Washington Post

Keyword: Pain & Touch
Link ID: 26485 - Posted: 08.12.2019

By Paula Span Juli Engel was delighted when a neurologist recommended a PET scan to determine whether amyloid — the protein clumps associated with an increased risk of Alzheimer’s disease — was accumulating in her mother’s brain. “My internal response was, ‘Yay!’” said Ms. Engel, 65, a geriatric care manager in Austin, Tex., who has been making almost monthly trips to help her mother in Florida. “He’s using every tool to try to determine what’s going on.” Sue Engel, who’s 83 and lives in a retirement community in Leesburg, Fla., has been experiencing memory problems and other signs of cognitive decline for several years. Her daughter checked off the warning signs: her mother has been financially exploited, suffered an insurance scam, caused an auto accident. Medicare officials decided in 2013, shortly after PET (positron emission tomography) amyloid imaging became available, that they lacked evidence of its health benefits. So outside of research trials, Medicare doesn’t cover the scans’ substantial costs ($5,000 to $7,000, the Alzheimer’s Association says); private insurers don’t, either. Juli Engel thinks Medicare should reimburse for the scan, but “if necessary, we’ll pay for it out of pocket,” she said. Her mother already has an Alzheimer’s diagnosis and is taking a commonly prescribed dementia drug. So she probably doesn’t meet the criteria developed by the Alzheimer’s Association and nuclear medicine experts, which call for PET scans only in cases of unexplained or unusual symptoms and unclear diagnoses. But as evidence mounts that brain damage from Alzheimer’s begins years before people develop symptoms, worried patients and their families may start turning to PET scans to learn if they have this biomarker. © 2019 The New York Times Company

Keyword: Alzheimers; Brain imaging
Link ID: 26484 - Posted: 08.03.2019

By Michael Buchanan Social affairs correspondent, BBC News Alcohol-related brain damage, a condition similar to dementia, is poorly understood and often missed by health professionals, a study by charity Alcohol Change UK says. And patients struggling with the "double stigma" of brain impairment and alcohol addiction often end up in accident and emergency units because of a lack of community services. The condition affects balance and makes it difficult for patients to process new information. They can also become confused and experience memory loss. At its most basic, the injury is caused by damage to brain cells from alcohol, which causes them to shrink and die or deprives them of vital vitamins. Heavy drinking A man who drinks more than 50 units of alcohol a week, or a woman drinking more than 35 units, for five years or more is at risk of the disease, Alcohol Change says. "You're talking about a condition that's the result of long-term heavy drinking, which a lot of people are going to say, 'Well someone's done that themselves, it's his own fault,'" Andrew Misell, from Alcohol Change UK, said. "And then you're talking about a condition which makes someone's behaviour difficult to manage - people can be aggressive, inappropriate, confused and confusing to others" Last year, the alcohol care team at the Royal Liverpool Hospital treated 79 patients with alcohol-related brain disease. Patients are asked to sit a test used to diagnose dementia, which has been adapted for this condition. A low score can lead to scans to see if the patient's alcohol intake has shrunk their brain. If it has, an occupational therapist is then brought in to find out how the brain damage has affected that person's daily life. © 2019 BBC

Keyword: Drug Abuse; Alzheimers
Link ID: 26483 - Posted: 08.03.2019