Most Recent Links

Follow us on Facebook or subscribe to our mailing list, to receive news updates. Learn more.


Links 6781 - 6800 of 29351

Amy Maxmen The acid tests of 1960s San Francisco have morphed into something quite different in today’s Silicon Valley. Mind-altering trips have given way to subtle productivity boosts purportedly caused by tiny amounts of LSD or other psychedelic drugs. Fans claim that this ‘microdosing’ boosts creativity and concentration, but sceptics doubt that ingesting or inhaling one-tenth of the normal dose could have an effect. Science could soon help to settle the matter. Researchers have finally mapped the 3D structure of LSD in its active state — and the details, published today in Cell1, indicate the key to the chemical’s potency1. Another team reports today in Current Biology2 that it has pinpointed the molecular go-between that creates the perception of deep meaning experienced during acid trips — a feeling that the writer Aldous Huxley once described as “solidarity with the Universe”. “This is what we dreamed of doing when I was a graduate student in the seventies,” says Gavril Pasternak, a pharmacologist at Memorial Sloan Kettering Cancer Center in New York City who has spent decades studying the receptor proteins in the brain that mediate the activity of opioids and psychedelic drugs. “Work like this expands our understanding of how these receptors work.” In 1972, researchers revealed LSD’s shape by mapping the arrangement of atoms in its crystallized form3. But in the decades since, they’ve struggled to reveal the crystal structure of a receptor grasping a molecule of LSD or another psychedelic drug. This active configuration is key to understanding how drugs work, because their action depends on how they cling to molecules in the body. © 2017 Macmillan Publishers Limited,

Keyword: Drug Abuse; Depression
Link ID: 23157 - Posted: 01.27.2017

By Anil Ananthaswamy People with post-traumatic stress disorder often get flashbacks that can be triggered by an innocuous smell or sound. Now a study that linked unrelated memories and separated them again, suggests that one day we may be able to decouple memories and prevent flashbacks in people with PTSD. Individual memories are stored in groups of neurons – an idea first proposed by psychologist Donald Hebb in 1949. Only now are we developing sophisticated techniques for examining these ensembles of neurons. To see whether two independent memories can become linked, Kaoru Inokuchi at the University of Toyama in Japan, and colleagues used a standard method for creating memories in mice. When mice are exposed to pain, they can learn to link this with associated stimuli, a taste, for example. The team trained mice to form two separate fear memories. First, the mice learned to avoid the sugary taste of saccharine. Whenever they licked a bottle filled with saccharine solution, they were injected with lithium chloride, which induces nausea. Disconnecting memories A few days later, the same mice were taught to associate a tone with a mild electric shock. This caused the mice to freeze whenever they heard it, even if it wasn’t followed with a shock. They remembered the tone as a traumatic experience. © Copyright Reed Business Information Ltd.

Keyword: Learning & Memory; Stress
Link ID: 23156 - Posted: 01.27.2017

By Mitch Leslie When we have food poisoning, the last thing we want to do is eat. But in mice, a microbe that causes this ailment actually increases appetite, a new study reveals. Researchers say they might be able to use the same trick to increase eating in cancer patients and old folks, who often lose their desire for food. “I think it’s a fantastic paper,” says immunophysiologist Keith Kelley of the University of Illinois in Urbana, who wasn’t connected to the study. The researchers deserve praise for combining approaches from several disciplines such as microbiology, neurobiology, and immunology to draw a surprising conclusion, he says. “It’s the way disease responses should be investigated.” Some of the symptoms you endure when you are ill, such as lethargy and fever, are actually good for you. Lolling on the couch all day, for instance, saves energy for your immune cells. But the picture is more complex for another of these so-called sickness behaviors—reduced appetite. Animal studies have found that eating less seems to improve the odds of surviving some infections, perhaps because it robs the invading microbes of key nutrients, but in other cases the loss of appetite often proves fatal. © 2017 American Association for the Advancement of Science

Keyword: Neuroimmunology; Obesity
Link ID: 23155 - Posted: 01.27.2017

Nicola Davis Girls as young as six years old believe that brilliance is a male trait, according research into gender stereotypes. The US-based study also found that, unlike boys, girls do not believe that achieving good grades in school is related to innate abilities. Andrei Cimpian, a co-author of the research from New York University, said that the work highlights how even young children can absorb and be influenced by gender stereotypes – such as the idea that brilliance or giftedness is more common in men. Are gendered toys harming childhood development? Read more “Because these ideas are present at such an early age, they have so much time to affect the educational trajectories of boys and girls,” he said. Writing in the journal Science, researchers from three US universities describe how they carried out a range of tests with 400 children, half of whom were girls, to probe the influence of gender stereotypes on children’s notions of intelligence and ability. In the first test, a group of 96 boys and girls of ages five, six and seven, were read a story about a highly intelligent person, and were asked to guess the person’s gender. They were then presented with a series of pictures showing pairs of adults, some same-sex, some opposite sex, and were asked to pick which they thought was highly intelligent. Finally, the children were asked to match certain objects and traits, such as “being smart”, to pictures of men and women. © 2017 Guardian News and Media Limited

Keyword: Sexual Behavior; Attention
Link ID: 23154 - Posted: 01.27.2017

By Marcy Cuttler, CBC News Imagine waking up suddenly deaf in one ear. Musician and composer Richard Einhorn has lived through it. In June 2010, the 64-year-old New Yorker awoke to his ears ringing. "The first thing you think of, of course, is a brain tumour or a stroke," he said. At the time, he was in upstate Massachusetts, far from help. So he called a cab and went to the closest hospital. Doctors eventually told him it was sudden sensorineural hearing loss (SSHL) — a little-known and not well understood condition that affects one person per 5,000 every year according to the U.S. National Institutes of Health. What doctors do know: that most people diagnosed with it are between the ages of 40 and 60; that men and women can be equally afflicted; and that it usually only impacts one ear. Einhorn, who couldn't hear well in his other ear due to a pre-existing condition, was left completely deaf. "It was incredibly difficult to communicate with anybody ... we were doing it with notes," he said. "I wouldn't recommend it on my worst enemy. It was really, really terrible." Dr. James Bonaparte says if you wake up with ringing in your ears that continues throughout the day, or if you notice a drop in hearing on one side — and you don't have a cold at the time — get checked. (CBC) ©2017 CBC/Radio-Canada

Keyword: Hearing
Link ID: 23153 - Posted: 01.27.2017

Jon Hamilton What Einstein did for physics, a Spaniard named Santiago Ramón y Cajal did for neuroscience more than a century ago. Back in the 1890s, Cajal produced a series of drawings of brain cells that would radically change scientists' understanding of the brain. And Cajal's drawings aren't just important to science. They are considered so striking that the Weisman Art Museum in Minneapolis has organized a traveling exhibition of Cajal's work called The Beautiful Brain. "Cahal was the founder of modern neuroscience," says Larry Swanson, a brain scientist at the University of Southern California who wrote an essay for the book that accompanies the exhibit. "Before Cajal it was just completely different," Swanson says. "Most of the neuroscientists in the mid-19th century thought the nervous system was organized almost like a fishing net." They saw the brain and nervous system as a single, continuous web, not a collection of separate cells. But Cajal reached a different conclusion. "Cajal looked under the microscope at different parts of the brain and said, 'It's not like a fishing net,'" Swanson says. "There are individual units called nerve cells or neurons that are put together in chains to form circuits." Cajal didn't just take notes on what he saw. He made thousands of highly detailed drawings, many of which are considered works of art. © 2017 npr

Keyword: Brain imaging
Link ID: 23152 - Posted: 01.27.2017

Esther Landhuis As big brain-mapping initiatives go, Taiwan's might seem small. Scientists there are studying the humble fruit fly, reverse-engineering its brain from images of single neurons. Their efforts have produced 3D maps of brain circuitry in stunning detail. Researchers need only a computer mouse and web browser to home in on individual cells and zoom back out to intertwined networks of nerve bundles. The wiring diagrams look like colourful threads on a tapestry, and they're clear enough to show which cell clusters control specific behaviours. By stimulating a specific neural circuit, researchers can cue a fly to flap its left wing or swing its head from side to side — feats that roused a late-afternoon crowd in November at the annual meeting of the Society for Neuroscience in San Diego, California. But even for such a small creature, it has taken the team a full decade to image 60,000 neurons, at a rate of 1 gigabyte per cell, says project leader Ann-Shyn Chiang, a neuroscientist at the National Tsing Hua University in Hsinchu City, Taiwan — and that's not even half of the nerve cells in the Drosophila brain. Using the same protocol to image the 86 billion neurons in the human brain would take an estimated 17 million years, Chiang reported at the meeting. Other technologies are more tractable. In July 2016, an international team published a map of the human brain's wrinkled outer layer, the cerebral cortex1. Many scientists consider the result to be the most detailed human brain-connectivity map so far. Yet, even at its highest spatial resolution (1 cubic millimetre), each voxel — the smallest distinguishable element of a 3D object — contains tens of thousands of neurons. That's a far cry from the neural connections that have been mapped at single-cell resolution in the fruit fly. © 2017 Macmillan Publishers Limited

Keyword: Brain imaging
Link ID: 23151 - Posted: 01.26.2017

By Meredith Wadman Many children with congenital heart disease (CHD)—the most common major birth defect in the United States—sustain brain damage that often leads to problems with behavior, thinking, and learning. Now, for the first time, researchers have described how the lack of brain oxygen that results from heart malformations might stunt the brains of newborns, opening avenues to potential therapies that could be used even before babies are born. The results are “incredibly exciting,” says Caitlin Rollins, a child neurologist at Boston Children’s Hospital. “This kind of study allows us to start understanding the cellular mechanisms” behind the brain damage, she says. In the future, she adds, “we might be able to alter the course of brain development” with drugs targeted at the cellular anomalies and delivered during pregnancy. CHD reduces oxygen delivery to the brain at a time when the fetus most needs it. This lack of oxygen is thought to be a primary cause of the brain aberrations, which first become visible on MRI scans in the third trimester of pregnancy. (The heart anomalies themselves are commonly identified in the second trimester, on routine ultrasound scans.) Yet until now, scientists have been unclear about the underlying cellular process causing the brain problems. So a research team led by scientists at Children’s National Health System in Washington, D.C., delivered subpar levels of oxygen to newborn piglets, whose course of brain development and whose highly evolved brain structure mirrors in many respects those of humans. © 2017 American Association for the Advancement of Science.

Keyword: Development of the Brain
Link ID: 23150 - Posted: 01.26.2017

By Andy Coghlan NEW drug will finally cure Alzheimer’s! Sound familiar? Seemingly every other week, the results of one preliminary trial or another promise that a game-changing drug for Alzheimer’s disease is just around the corner. Check back a few months later, though, and all mention of the drug has vanished, save perhaps for a terse story about a failed trial. Almost all clinical trials of new drugs to combat Alzheimer’s fail. No drug has bucked the trend in 20 years, but you wouldn’t know it from the constant promises of a breakthrough. Last November, after the failure of a particularly high-profile trial, for some the jig was up. “There are no treatments that can slow or reverse this devastating condition,” says Bryce Vissel at the University of Technology in Sydney, Australia. “There is no question that we have to look at Alzheimer’s in a different way.” So are we heading in the right direction, or do we need to rip up all the textbooks and start over? Alzheimer’s is the most common cause of dementia, and by some metrics its prevalence is rising. Alzheimer’s Disease International estimates that in 2015, 46.8 million people worldwide had dementia, a number that is set to double every 20 years, mostly because of an increasing number of older people in developing countries like India and China, leading to a global healthcare crisis. © Copyright Reed Business Information Ltd.

Keyword: Alzheimers
Link ID: 23149 - Posted: 01.26.2017

Sarah DeVos Targeting tangles of tau protein in mice with Alzheimer’s-like symptoms has reversed their brain damage, halting memory loss and extending their lives. Clumps of two types of sticky protein build up in the brains of people with Alzheimer’s disease: beta-amyloid plaques, and tangles of tau. While many attempts to develop drugs to treat Alzheimer’s have targeted beta-amyloid, tau protein tangles have long been suspected to play a role in memory loss. “Tau is what correlates with memory problems, so one hypothesis is that lowering tau could be beneficial,” says Tim Miller of Washington University in St Louis, Missouri. Now Miller’s team has purged tau tangles from the brains of Alzheimer’s-like mice for the first time. They used fragments of RNA called antisense oligonucleotides to sabotage the gene that makes tau, preventing it from being fully translated into protein. Once a day for four weeks, the team injected the antisense treatment, named Tau-ASO12, into the fluid at the base of each mouse’s spine. The mice had been genetically engineered to make a rogue form of tau similar to what is seen in people with Alzheimer’s, predisposing the mice to developing tau-related brain problems. The drug successfully spread throughout the brain, and was linked to a reduction in levels of tau that was made. It also seemed to destroy existing tau tangles, and prevent tau from spreading around the brain in older mice. © Copyright Reed Business Information Ltd.

Keyword: Alzheimers
Link ID: 23148 - Posted: 01.26.2017

By GRETCHEN REYNOLDS When people get up and move, even a little, they tend to be happier than when they are still, according to an interesting new study that used cellphone data to track activities and moods. In general, the researchers found, people who move are more content than people who sit. There already is considerable evidence that physical activity is linked to psychological health. Epidemiological studies have found, for example, that people who exercise or otherwise are active typically are less prone to depression and anxiety than sedentary people. But many of these studies focused only on negative moods. They often also relied on people recalling how they had felt and how much they had moved or sat in the previous week or month, with little objective data to support these recollections. For the new study, which was published this month in PLoS One, researchers at the University of Cambridge in England decided to try a different approach. They would look, they decided, at correlations between movement and happiness, that most positive of emotions. In addition, they would look at what people reported about their activity and compare it with objective measures of movement. To accomplish these goals, they first developed a special app for Android phones. Available free on the Google app store and ultimately downloaded by more than 10,000 men and women, it was advertised as helping people to understand how lifestyle choices, such as physical activity, might affect people’s moods. (The app, which is no longer available for download, opened with a permission form explaining to people that the data they entered would be used for academic research.) The app randomly sent requests to people throughout the day, asking them to enter an estimation of their current mood by answering questions and also using grids in which they would place a dot showing whether they felt more stressed or relaxed, depressed or excited, and so on. © 2017 The New York Times Company

Keyword: Depression; Obesity
Link ID: 23147 - Posted: 01.26.2017

Hannah Devlin Science correspondent Scientists believe that a radical treatment involving the tranquilliser ketamine could help overcome alcohol addiction by “erasing” drink-related memories. Psychologists based at University College London are testing whether a one-off dose of the drug could help hazardous drinkers who are trying to reduce their alcohol intake. Alcohol addiction is notoriously difficult to treat, and there are few effective therapies available. Using a recreational drug to treat addiction may sound counterintuitive, but the researchers say there is a growing body of research suggesting that ketamine can be used to disrupt harmful patterns of behaviour. Ravi Das, one of the lead researchers, said: “There is evidence that it could be useful as a treatment for alcoholism.” Crucially, ketamine can disrupt the formation of memories, and scientists believe that this property could be harnessed to over-write the memories that drive addiction and harmful patterns of behaviour. “Memories that you form can be hijacked by drugs in some people,” said Das. “If you were an alcoholic you might have a strong memory of being in a certain place and wanting to drink. Those memories get continuously triggered by things in the environment that you can’t avoid.” For instance, seeing a glass of beer, hearing the clinking of glasses or even arriving home from work may trigger memories of the rewarding sensation of taking a drink – and might prompt a person to follow this urge. © 2017 Guardian News and Media Limited

Keyword: Drug Abuse
Link ID: 23146 - Posted: 01.25.2017

By Bob Grant More and more Americans are using cannabis both for medicinal and recreational purposes, but scientists still know little about the drug’s effects on human physiology, according to a National Academies report released this month (January 12). Part of this knowledge gap owes to the fact that cannabis is classified as a Schedule I drug under the US Controlled Substances Act. In the eyes of the federal government, marijuana is a dangerous substance—on par with heroin—that “has no currently accepted medical use in treatment in the United States.” But researchers in Canada are not far ahead of their US counterparts, even though cannabis has since 2001 been functionally legal for medicinal use at the federal level there. See “National Academies Detail the State of Weed Science” “I wish I could say that [legalizing medical marijuana] had led to more research” in Canada, said Mark Ware, a McGill University pain management physician who has researched the safety and efficacy of cannabinoids for the past 18 years. “I think there’s certainly a willingness to be able to document real world use of cannabis under a legal framework.” Ware, who served as a reviewer on the National Academies report, added that while there are several public registries that track the legal use of cannabis among Canadians, experimental evidence on the effects of that use are lacking. “The clinical trials, I think for most people that’s an expensive undertaking,” he said. “There are still questions around who owns the intellectual property, who’s going to sponsor the trials. . . . Those remain barriers even in a legal framework as to the cost of that kind of research and the drug development piece of it.” © 1986-2017 The Scientist

Keyword: Drug Abuse; Pain & Touch
Link ID: 23145 - Posted: 01.25.2017

By Nathaniel P. Morris In the 20th century, the deinstitutionalization of mental health care took patients out of long-term psychiatric facilities with the aim that they might return to the community and lead more fulfilling lives. But in our rush to shut down America’s asylums, we failed to set up adequate outpatient services for the mentally ill, who now often fend for themselves on the streets or behind bars. According to recent surveys, the number of state psychiatric beds has fallen from over 550,000 in 1955 to fewer than 38,000 in 2016. Meanwhile, research conducted by the Treatment Advocacy Center estimates over 355,000 inmates in America’s prisons and jails suffered from severe mental illness in 2012. Last year, a report by the Department of Housing and Urban Development found that over 100,000 Americans who experienced homelessness also suffered from severe mental illness. Mental health advocates point to a number of failures, such as limited funding for outpatient care and a lack of political foresight, that may have led to this situation. Yet emerging community-based approaches to mental health care are providing hope for the severely mentally ill—as well as some constraints. Court-ordered care for patients with severe mental illness, known as assisted outpatient treatment or AOT, is spreading nationwide. In December, President Obama signed into law the landmark 21st Century Cures Act, bipartisan legislation that bolsters funding for medical research and reshapes approval processes for drugs and medical devices. The law also supports a number of mental health reforms, including millions in federal incentives for states to develop AOT. © 2017 Scientific American

Keyword: Depression; Schizophrenia
Link ID: 23144 - Posted: 01.25.2017

By Helen Briggs BBC News The idea that dogs are more intelligent than cats has been called into question. Japanese scientists say cats are as good as dogs at certain memory tests, suggesting they may be just as smart. A study - involving 49 domestic cats - shows felines can recall memories of pleasant experiences, such as eating a favourite snack. Dogs show this type of recollection - a unique memory of a specific event known as episodic memory. Humans often consciously try to reconstruct past events that have taken place in their lives, such as what they ate for breakfast, their first day in a new job or a family wedding. These memories are linked with an individual take on events, so they are unique to that person. Saho Takagi, a psychologist at Kyoto University, said cats, as well as dogs, used memories of a single past experience, which may imply they have episodic memory similar to that of humans. "Episodic memory is viewed as being related to introspective function of the mind; our study may imply a type of consciousness in cats," she told BBC News. "An interesting speculation is that they may enjoy actively recalling memories of their experience like humans." The Japanese team tested 49 domestic cats on their ability to remember which bowl they had already eaten out of and which remained untouched, after a 15-minute interval. © 2017 BBC

Keyword: Learning & Memory; Evolution
Link ID: 23143 - Posted: 01.25.2017

What are you like? A look at your brain may tell you. A study has found a link between some elements of brain structure and certain personality traits. The study involved scanning the brains of 500 volunteers, and assessing their personalities in terms of five traits – neuroticism, openness, extraversion, agreeableness, and conscientiousness. The researchers focused on the structure of the cortex, the outer layer of the brain. They found that in people who are more neurotic and prone to mood changes, the cortex tends to be thicker and less wrinkly. People who appear more open – for example, curious and creative – show the opposite pattern. More mature The link between structure and personality may help explain how we mature as we get older. Folds and wrinkles are thought to increase the surface area of the brain, but make the cortex thinner. The cortex continues to stretch and fold throughout childhood and adolescence, and into adulthood. As we grow up, people generally become less neurotic, and more conscientious and agreeable. “Our work supports the notion that personality is, to some degree, associated with brain maturation,” says Roberta Riccelli, at Magna Graecia University in Catanzaro, Italy. Journal reference: Social Cognitive and Affective Neuroscience © Copyright Reed Business Information Ltd.

Keyword: Emotions; Brain imaging
Link ID: 23142 - Posted: 01.25.2017

By NATALIE ANGIER Whether personally or professionally, Daniel Kronauer of Rockefeller University is the sort of biologist who leaves no stone unturned. Passionate about ants and other insects since kindergarten, Dr. Kronauer says he still loves flipping over rocks “just to see what’s crawling around underneath.” In an amply windowed fourth-floor laboratory on the east side of Manhattan, he and his colleagues are assaying the biology, brain, genetics and behavior of a single species of ant in ambitious, uncompromising detail. The researchers have painstakingly hand-decorated thousands of clonal raider ants, Cerapachys biroi, with bright dots of pink, blue, red and lime-green paint, a color-coded system that allows computers to track the ants’ movements 24 hours a day — and makes them look like walking jelly beans. The scientists have manipulated the DNA of these ants, creating what Dr. Kronauer says are the world’s first transgenic ants. Among the surprising results is a line of Greta Garbo types that defy the standard ant preference for hypersociality and instead just want to be left alone. The researchers also have identified the molecular and neural cues that spur ants to act like nurses and feed the young, or to act like queens and breed more young, or to serve as brutal police officers, capturing upstart nestmates, spread-eagling them on the ground and reducing them to so many chitinous splinters. Dr. Kronauer, who was born and raised in Germany and just turned 40, is tall, sandy-haired, blue-eyed and married to a dentist. He is amiable and direct, and his lab’s ambitions are both lofty and pragmatic. “Our ultimate goal is to have a fundamental understanding of how a complex biological system works,” Dr. Kronauer said. “I use ants as a model to do this.” As he sees it, ants in a colony are like cells in a multicellular organism, or like neurons in the brain: their fates joined, their labor synchronized, the whole an emergent force to be reckoned with. © 2017 The New York Times Company

Keyword: Sexual Behavior; Chemical Senses (Smell & Taste)
Link ID: 23141 - Posted: 01.24.2017

By Rachael Lallensack Jet lag can put anyone off their game, even Major League Baseball (MLB) players. Long-distance travel can affect specific—and at times, crucial—baseball skills such as pitching and base running, a new study finds. In fact, jetlag's effects can even cancel out the home field advantage for some teams returning from away games. Jet lag is known for its fatigue-inducing effects, most of which stem from a mismatch between a person’s internal clock and the time zone he or she is in, something called “circadian misalignment.” This misalignment is especially strong when a person’s day is shorter than it should be—which happens whenever people travel east—previous research has shown. Just how that affects sports teams has long been debated. A 2009 study of MLB, for example, found that jet lag did decrease a team’s likelihood of winning, if only slightly. But no prior study has ever been able to pinpoint exact areas of game play where the effects of jet lag hit hardest—data that could help coaches and trainers better prepare players for games following travel. To figure out how that might happen, “adopted” Chicago Cubs fan and study author Ravi Allada, a neurobiologist at Northwestern University in Evanston, Illinois, looked at 20 years’ worth of MLB data from 1992 to 2011. He and his team narrowed their data set from 46,535 games to the 4919 games in which players traveled at least two time zones. Then, they broke down offensive and defensive stats from each of those games, including home runs allowed, stolen bases, and sacrifice flies. Finally, they compared how the numbers changed for teams that had traveled east versus those that had traveled west. © 2017 American Association for the Advancement of Science.

Keyword: Biological Rhythms
Link ID: 23140 - Posted: 01.24.2017

by Laura Sanders Most nights I read a book in bed to wind down. But when I run out of my library supply, I read articles on my phone instead. I suspect that this digital substitution messes with my sleep. That’s not good for me — but it’s probably worse for the many children who have screens in their rooms at night. A team of researchers recently combed through the literature looking for associations between mobile devices in the bedroom and poor sleep. Biostatistician Ben Carter of King’s College London and colleagues found that kids between ages 6 and 19 who used screen-based media around bedtime slept worse and were more tired in the day. That’s not surprising: Phones, tablets and laptops make noise and emit blue light that can interfere with the sleep-inducing melatonin. But things got interesting when the researchers compared kids who didn’t have screens in their bedrooms with kids who did have phones or tablets in their rooms but didn’t use them. You might think there wouldn’t be a sleep difference between those groups. None of these kids were up all night texting, gaming or swiping, so neither sounds nor blue light were messing with any of the kids’ sleep. Yet Carter and colleagues found a difference: Kids who had screen-based media in their bedroom, but didn’t use it, didn’t sleep as much as kids without the technology. What’s more, the sleep they did get was worse and they were more tired during the day, the researchers reported in the December JAMA Pediatrics. |© Society for Science & the Public 2000 - 2017

Keyword: Biological Rhythms; Sleep
Link ID: 23139 - Posted: 01.24.2017

By Ingfei Chen Learning Morse code, with its tappity-tap rhythms of dots and dashes, could take far less effort—and attention—than one might think. The trick is a wearable computer that engages the sensory powers of touch, according to a recent pilot study. The results suggest that mobile devices may be able to teach us manual skills, almost subconsciously, as we go about our everyday routines. Ph.D. student Caitlyn Seim and computer science professor Thad Starner of the Georgia Institute of Technology tinker with haptics, the integration of vibrations or other tactile cues with computing gadgets. Last September at the 20th International Symposium on Wearable Computers in Heidelberg, Germany, they announced that they had programmed Google Glass to passively teach its wearers Morse code—with preliminary signs of success. For the study, 12 participants wore the smart glasses while engrossed in an online game on a PC. During multiple hour-long sessions, half the players heard Google Glass's built-in speaker repeatedly spelling out words and felt taps behind the right ear (from a bone-conduction transducer built into the frames) for the dots and dashes corresponding to each letter. The other six participants heard only the audio, without the corresponding vibrations. After each run of game playing, all the players were asked to tap out letters in Morse code using a finger on the touch pad of the smart glasses; for example, if they tapped “dot-dot,” an “i” would pop up on the visual display. The brief testing essentially prompted them to try to learn the code. After four one-hour sessions, the group that had received tactile cues could tap a pangram (a sentence using the entire alphabet) with 94 percent accuracy. The audio-only group eventually achieved 47 percent accuracy, learning solely from their trial-and-error inputs. © 2017 Scientific American

Keyword: Learning & Memory
Link ID: 23138 - Posted: 01.24.2017