Most Recent Links
Follow us on Facebook or subscribe to our mailing list, to receive news updates. Learn more.
By David Brown, A team of researchers said Wednesday that it had produced embryonic stem cells — a possible source of disease-fighting spare parts — from a cloned human embryo. Scientists at the Oregon Health and Science University accomplished in humans what has been done over the past 15 years in sheep, mice, cattle and several other species. The achievement is likely to, at least temporarily, reawaken worries about “reproductive cloning” — the production of one-parent duplicate humans. But few experts think that production of stem cells through cloning is likely to be medically useful soon, or possibly ever. “An outstanding issue of whether it would work in humans has been resolved,” said Rudolf Jaenisch, a biologist at MIT’s Whitehead Institute in Cambridge, Mass., who added that he thinks the feat “has no clinical relevance.” “I think part of the significance is technical and part of the significance is historical,” said John Gearhart, head of the Institute for Regenerative Medicine at the University of Pennsylvania. “Many labs attempted it, and no one had ever been able to achieve it.” A far less controversial way to get stem cells is now available. It involves reprogramming mature cells (often ones taken from the skin) so that they return to what amounts to a second childhood from which they can grow into a new and different adulthood. Learning how to make and manipulate those “induced pluripotent stem” (IPS) cells is one of biology’s hottest fields. © 1996-2013 The Washington Post
Keyword: Stem Cells; Parkinsons
Link ID: 18162 - Posted: 05.16.2013
By Jason G. Goldman There is a rich tradition in psychology and neuroscience of using animals as models for understanding humans. Humans, after all, are enormously complicated creatures to begin even from a strictly biological perspective. Tacking on the messiness that comes with culture makes the study of the human mind tricky, at best. So, just as biomedical scientists have relied upon the humble mouse, psychological and cognitive scientists have too turned to our evolutionary cousins in the animal kingdom as a means of better understanding ourselves. In her new book Animal Wise, journalist Virginia Morrell recounts a conversation with one researcher who pointed out that decades of research were built upon “rats, pigeons, and college sophomores, preferably male.” The college undergrads stood in for all of humanity, the rats served as representatives of all other mammals, and pigeons served as a model for the rest of the animal kingdom. The silly part isn’t that non-human animals can be used effectively as a means of understanding more about our own species. The idea is simple: understand how a simple system works, and you can make careful inferences about the way that complex systems work. That is (or should be) obvious. In his interview with CNN today, memory research pioneer and Nobel Prize winner Eric Kandel said as much: “Rather than studying the most complex form of memory in a very complicated animal, we had to take the most simple form — an implicit form of memory — in a very simple animal.” © 2013 Scientific American
Keyword: Learning & Memory; Evolution
Link ID: 18161 - Posted: 05.16.2013
by Meera Senthilingam Malaria parasites give mosquitoes a keener sense of smell, it seems. A small-scale study in the lab finds that mosquitoes infected by the parasite are three times as likely as uninfected mosquitoes to respond to human odours. If the same results are seen in malaria-carrying mosquitoes in the wild, it could lead to new ways to combat the disease. Female anopheles mosquitoes are attracted to the chemicals in human odours, which help them find the source of blood they need to grow their eggs. When these mosquitoes carry Plasmodium falciparum – the most lethal form of malaria parasite – the likelihood that they will target humans rises. "We knew already that mosquitoes bite more often when they're infected. They probe the skin more frequently," says James Logan from the London School of Hygiene and Tropical Medicine. To quantify the effect – and try to work out its cause – Logan and his colleagues infected some lab-grown Anopheles gambiae mosquitoes with Plasmodium parasites, while leaving others uninfected. They then tested how both groups were attracted to human smells. Mosquitoes are particularly attracted to foot odours, so Logan's team used nylon stockings containing the volatile chemicals produced by our feet. Over a period of three minutes, Plasmodium-infected mosquitoes landed and attempted to bite the stockings around 15 times on average. By contrast, the uninfected mosquitoes attempted to bite only around five times on average during that time. © Copyright Reed Business Information Ltd.
Keyword: Chemical Senses (Smell & Taste)
Link ID: 18160 - Posted: 05.16.2013
Ed Yong The US adolescents who signed up for the Study of Mathematically Precocious Youth (SMPY) in the 1970s were the smartest of the smart, with mathematical and verbal-reasoning skills within the top 1% of the population. Now, researchers at BGI (formerly the Beijing Genomics Institute) in Shenzhen, China, the largest gene-sequencing facility in the world, are searching for the quirks of DNA that may contribute to such gifts. Plunging into an area that is littered with failures and riven with controversy, the researchers are scouring the genomes of 1,600 of these high-fliers in an ambitious project to find the first common genetic variants associated with human intelligence. The project, which was launched in August 2012 and is slated to begin data analysis in the next few months, has spawned wild accusations of eugenics plots, as well as more measured objections by social scientists who view such research as a distraction from pressing societal issues. Some geneticists, however, take issue with the study for a different reason. They say that it is highly unlikely to find anything of interest — because the sample size is too small and intelligence is too complex. Earlier large studies with the same goal have failed. But scientists from BGI’s Cognitive Genomics group hope that their super-smart sample will give them an edge, because it should be enriched with bits of DNA that confer effects on intelligence. “An exceptional person gets you an order of magnitude more statistical power than if you took random people from the population — I’d say we have a fighting chance,” says Stephen Hsu, a theoretical physicist from Michigan State University in East Lansing, who acts as a scientific adviser to BGI and is one of the project’s leaders. © 2013 Nature Publishing Group,
Keyword: Genes & Behavior; Intelligence
Link ID: 18159 - Posted: 05.15.2013
20:00 13 May 2013 by Douglas Heaven Genes in cells throughout the body switch on and off throughout the day in a coordinated way. Or at least they should. In people with clinical depression, genes in their brain tissues appear to be significantly out of sync – a finding that could lead to new treatments for the condition. We know from previous studies that genes in cells elsewhere, such as the skin, follow a 24-hour cycle of activity. But identifying patterns of genetic activity in a living brain isn't easy to do. "We always assumed we would have a clock [in our brain]," says Huda Akil at the University of Michigan in Ann Arbor. "But it had never been shown before." Akil and her colleagues examined the brains of 55 people with a known time of death, looking at around 12,000 genes in tissues from six brain regions. By matching the time of death with molecular signs of genetic activity – whether each gene was actively expressing itself or not – the team identified hundreds of genes that follow a daily cycle. Sudden death Akil says it was important to look at the brains of individuals who had died suddenly – through a heart attack or car accident, for example. Slower deaths can cause dramatic changes in the brain that would have obscured what they were looking for, but sudden death freezes the genetic activity. "We can capture an instant," she says. © Copyright Reed Business Information Ltd.
Keyword: Depression; Sleep
Link ID: 18158 - Posted: 05.14.2013
By Samyukta Mullangi A recent article in NYTimes [1] declared that the rising rate of suicides among our baby boomer generation now made suicides, by raw numbers alone, a bigger killer than motor vehicle accidents! Researchers quoted within the article pointed to complex reasons like the economic downturn over the past decade, the widespread availability of opioid drugs like oxycodone, and changes in marriage, social isolation and family roles. Then I scrolled down, as I always do, to peruse some of the readers’ comments, and that’s when I paused. I suppose in hindsight that I had expected readers to exclaim at the shocking statistics (suicide rates now stand at 27.3 per 100,000 for middle aged men, 8.1 per 100,000 for women), or lament over personal stories of relatives or friends who took their own lives. While I certainly saw a few such comments, I was amazed to discover the number of readers who were sympathetic to the idea of suicide. “Molly” wrote “Why is suicide usually looked upon as a desperate and forbidden act? Can’t we accept that in addition to poverty, loneliness, alienation, ill health, life in world [sic] that is sometimes personally pointless means that death is a relief? I believe the right to die, in a time and place (and wishfully peacefully without violence) is a basic human right.” This post was ‘recommended’ by 351 other readers at the time of this essay being written. © 2013 Scientific American
Keyword: Depression; Sleep
Link ID: 18157 - Posted: 05.14.2013
Brian Owens The gut is home to innumerable different bacteria — a complex ecosystem that has an active role in a variety of bodily functions. In a study published this week in Proceedings of the National Academy of Sciences1, a team of researchers finds that in mice, just one of those bacterial species plays a major part in controlling obesity and metabolic disorders such as type 2 diabetes. The bacterium, Akkermansia muciniphila, digests mucus and makes up 3–5% of the microbes in a healthy mammalian gut. But the intestines of obese humans and mice, and those with type 2 diabetes, have much lower levels. A team led by Patrice Cani, who studies the interaction between gut bacteria and metabolism at the Catholic University of Louvain in Belgium, decided to investigate the link. Mice that were fed a high-fat diet, the researchers found, had 100 times less A. muciniphila in their guts than mice fed normal diets. The researchers were able to restore normal levels of the bacterium by feeding the mice live A. muciniphila, as well as 'prebiotic' foods that encourage the growth of gut microbes. The effects of this treatment were dramatic. Compared with untreated animals, the mice lost weight and had a better ratio of fat to body mass, as well as reduced insulin resistance and a thicker layer of intestinal mucus. They also showed improvements in a host of other indicators related to obesity and metabolic disorders. “We found one specific common factor between all the different parameters that we have been investigating over the past ten years,” says Cani. © 2013 Nature Publishing Group
Keyword: Obesity
Link ID: 18156 - Posted: 05.14.2013
Linda Carroll TODAY contributor We all get lost or disoriented once in a while, but for Sharon Roseman, being lost is a way of life. A little quirk in her brain makes it impossible to recognize landmarks and find her way around neighborhoods that should have become familiar long ago. “I can literally see my house out the car window, but I have no clue that it’s my house,” Roseman told NBC’s Kristen Dahlgren. Roseman, 64, suffers from developmental topographical disorientation, or DTD, a disorder that had flown under brain researchers’ radar until very recently. DTD was first described as a single case study in a paper published online in 2008 in the journal Neuropsychologia. At the time, it was thought to be extremely rare, says the study’s lead author, Giuseppe Iaria, professor of cognitive neuroscience at the University of Calgary. But since then, Iaria has discovered nearly 1,000 other people with DTD and he thinks there may be a lot more. He currently estimates that about 2 percent of the population may be constantly coping with orientation and navigation problems caused by the disorder. DTD is a profound and disabling deficit. Nothing, not even the layout of a house you’ve lived in for decades, ever becomes familiar. And for Roseman that has made life very trying. When her kids would cry in the night, she would struggle to find her way to them.
Keyword: Attention
Link ID: 18155 - Posted: 05.14.2013
Pregnant mothers’ exposure to the flu was associated with a nearly fourfold increased risk that their child would develop bipolar disorder in adulthood, in a study funded by the National Institutes of Health. The findings add to mounting evidence of possible shared underlying causes and illness processes with schizophrenia, which some studies have also linked to prenatal exposure to influenza. “Prospective mothers should take common sense preventive measures, such as getting flu shots prior to and in the early stages of pregnancy and avoiding contact with people who are symptomatic,” said Alan Brown, M.D., M.P.H, of Columbia University and New York State Psychiatric Institute, a grantee of the NIH’s National Institute of Mental Health (NIMH). “In spite of public health recommendations, only a relatively small fraction of such women get immunized. The weight of evidence now suggests that benefits of the vaccine likely outweigh any possible risk to the mother or newborn.” Brown and colleagues reported their findings online May 8, 2013 in JAMA Psychiatry. Although there have been hints of a maternal influenza/bipolar disorder connection, the new study is the first to prospectively follow families in the same HMO, using physician-based diagnoses and structured standardized psychiatric measures. Access to unique Kaiser-Permanente, county and Child Health and Development Study External Web Site Policy databases made it possible to include more cases with detailed maternal flu exposure information than in previous studies.
Keyword: Schizophrenia; Development of the Brain
Link ID: 18154 - Posted: 05.14.2013
By ABIGAIL ZUGER, M.D. I hadn’t seen Larry in a dozen years when he reappeared in my office a few months ago, grinning. We were both grinning. I always liked Larry, even though he was a bit of a hustler, a little erratic in his appointments, a persistent dabbler in a variety of illegal substances. But he was always careful to avoid the hard stuff; he said he had a bad problem as a teenager and was going to stay out of trouble. It was to stay out of trouble that he left town all those years ago, and now he was back, grayer and thinner but still smiling. Then he pulled out a list of the medications he needed, and we both stopped smiling. According to Larry’s list, he was now taking giant quantities of one of the most addictive painkillers around, an immensely popular black-market drug most doctors automatically avoid prescribing except under the most exceptional circumstances. “I got a bad back now, Doc,” Larry said. Doctors hate pain. Let me count the ways. We hate it because we are (mostly) kindhearted and hate to see people suffer. We hate it because it is invisible, cannot be measured or monitored, and varies wildly and unpredictably from person to person. We hate it because it can drag us closer to the perilous zones of illegal practice than any other complaint. And we hate it most of all because unless we specifically seek out training in how to manage pain, we get virtually none at all, and wind up flying over all kinds of scary territory absolutely solo, without a map or a net. Copyright 2013 The New York Times Company
Keyword: Pain & Touch; Drug Abuse
Link ID: 18153 - Posted: 05.14.2013
By Scicurious Aging happens. As you get older, your body slows down, eventually your brain slows down, too. Some things go gradually, and some go suddenly. To many people, this might seem like a pretty random process. We used to think of aging this way, as just…well cells get old, which means we get old, too. DNA replication after a while starts making errors in repair, the errors build up, and on the whole body scale the whole thing just kind of goes downhill. It seems random. But in fact, it’s not. There are specific proteins which can help control this process. And one of these, NF-kB, in one particular brain region, may have a very important role indeed. NF-kB (which stands for nuclear factor kappa-light-chain-enhancer of activated B cells, which is why we use NF-kB) is a protein complex that has a lot of roles to play. It’s an important starting player in the immune system, where it helps to stimulate antibodies. It’s important in memory and stress responses. NF-kB is something called a transcription factor, which helps to control what DNA is transcribed to RNA, and therefore what proteins will eventually be produced. Transcription factors, as you can see, can have a very large number of functions. But in the hypothalamus, NF-kB may have the added function of helping to control aging. The hypothalamus is an area of many small nuclei (further sub areas of neurons) located at the base of the brain. It’s been coming more and more into vogue lately among neuroscientists. In the past, we were interested in the hypothalamus mostly for its role in controlling hormone release from the dangling pituitary gland before it, but now we are learning that the hypothalamus can play roles in fear, mood, food intake, reproduction, and now…aging. © 2013 Scientific American
Keyword: Development of the Brain; Hormones & Behavior
Link ID: 18152 - Posted: 05.14.2013
Zoe Cormier A study of two ancient hominins from South Africa suggests that changes in the shape and size of the middle ear occurred early in our evolution. Such alterations could have profoundly changed what our ancestors could hear — and perhaps how they could communicate. Palaeoanthropologist Rolf Quam of Binghamton University in New York state and his colleagues recovered and analysed a complete set of the three tiny middle-ear bones, or ossicles, from a 1.8-million-year-old specimen of Paranthropus robustus and an incomplete set of ossicles from Australopithecus africanus, which lived from about 3.3 million to around 2.1 million years ago. The ossicles are the smallest bones in the human body, and are rarely preserved intact in hominin fossils, Quam says. In both specimens, the team found that the malleus (the first in the chain of the three middle-ear bones) was human-like — smaller in proportion compared to the ones in our ape relatives. Its size would also imply a smaller eardrum. The similarity between the two species points to a “deep and ancient origin” of this feature, Quam says. “This could be like bipedalism: a defining characteristic of hominins.” It is hard to draw conclusions about hearing just from the shape of the middle-ear bones because the process involves so many different ear structures, as well as the brain itself. However, some studies have shown that the relative sizes of the middle-ear bones do affect what primates can hear2. Genomic comparisons with gorillas have indicated that changes in the genes that code for these structures might also demarcate humans from apes3. © 2013 Nature Publishing Group
Keyword: Hearing; Evolution
Link ID: 18151 - Posted: 05.14.2013
by Michael Balter Researchers debate when language first evolved, but one thing is sure: Language requires us not only to talk but also to listen. A team of scientists now reports recovering the earliest known complete set of the three tiny middle ear bones—the malleus ("hammer"), incus ("anvil"), and stapes ("stirrup")—in a 2.0-million-year-old skull of Paranthropus robustus, a distant human relative found in South Africa (see photo). Reporting online today in the Proceedings of the National Academy of Sciences, the researchers found that the malleus of P. robustus, as well one found earlier in the early human relative Australopithecus africanus, is similar to that of modern humans, whereas the two other ear bones most closely resemble existing African and Asian great apes. The team is not entirely sure what this precocious appearance of a human-like malleus means. But since the malleus is attached directly to the eardrum, the researchers suggest that it might be an early sign of the high human sensitivity to middle-range acoustic frequencies between 2 and 4 kilohertz—frequencies critical to spoken language, but which apes and other primates are much less sensitive to. © 2010 American Association for the Advancement of Science
Keyword: Hearing; Evolution
Link ID: 18150 - Posted: 05.14.2013
By DAVID DOBBS In the autistic person, it seems, hums a vital and distinctive essence — but one whose nature is obscured by thick layers of behavior and perception. Or, as Temple Grandin puts it, “two panes of glass.” For a quarter century, Dr. Grandin — the brainy, straight-speaking, cowboy-shirt-wearing animal scientist and slaughterhouse designer who at 62 is perhaps the world’s most famous autistic person — has been helping people break through the barriers separating autistic from nonautistic experience. Like Dr. Sacks, who made her famous as the title figure in his 1995 collection “An Anthropologist on Mars,” Dr. Grandin has helped us understand autism not just as a phenomenon, but as a different but coherent mode of existence that otherwise confounds us. In her own books and public appearances, she excels at finding concrete examples that reveal the perceptual and social limitations of autistic and “neurotypical” people alike. In “The Autistic Brain,” her latest book, written with the science author Richard Panek, she shows this talent most vividly in a middle chapter that looks at the sensory world of autism. It is a world filled with anomalies, in which everyday sensations can be overwhelming: A school bell can feel like a dentist’s drill, a scratchy shirt like a swarm of fire ants. In other cases the autistic person may feel so little sensation that she’ll try to fill the vacuum and create some sort of order — hence the rocking, twirling, hand-flapping, noisemaking behaviors that can discomfit and alienate onlookers. © 2013 The New York Times Company
Keyword: Autism
Link ID: 18149 - Posted: 05.14.2013
By Melanie Tannenbaum Imagine that you’re an infant monkey, and you’ve just been thrown into a cage after several hours in isolation. You’ve been deprived of food, so you’re starving. Facing you are two adult-looking (fake) monkeys, designed to look like each one could potentially be your mother. On the left is a “wire mother,” equipped with a bottle and feeding tube so you can cling to her and fill your belly with milk. On the right is a “cloth mother,” with no bottle, but with a fuzzy terrycloth exterior that will allow for hours of soft, warm snuggles. You can only run to one of the monkeys. Which one will you choose? Six or seven decades ago, many psychologists would have claimed that any affection that we experience towards our parental figures is a purely behaviorist response. After many instances of conditioning a sense of “positive affect” after receiving life-sustaining food from mothers, children associate that positive emotion with these caregivers, an association that serves as the sole explanation for why people “love” their mothers. But that’s not what Harry Harlow thought. Harlow, a psychologist working at the University of Wisconsin – Madison during the 1960s, believed that there was something more important underlying our affection for Mom and Dad than our primal need to eat and survive. He believed that there was an additional factor: Comfort. What Harlow did to test this hypothesis was arguably ingenious, though inarguably cruel.1 Harlow deprived monkeys of food, making them desperately hungry, and then stuck them into a cage where they had a choice of two “mother figures” to run towards. On the left was a wire mother – cold and uncomfortable, yet equipped with a bottle that would feed the baby with life-sustaining nutrients. On the right was a cloth mother – warm, soft, and comfortable, yet unable to provide the infant with any food. If the only reason why we “love” our mothers (and fathers) is based on a conditioned response to our need for food, then the infant monkeys should run to the wire mothers who can feed them every time. © 2013 Scientific American
Keyword: Sexual Behavior; Development of the Brain
Link ID: 18148 - Posted: 05.14.2013
By ANDREW C. REVKIN Twenty-two months ago, I interrupted my nonstop reporting about paths toward a sustainable future for our species to focus on sustaining myself. The hiatus was not by choice, but was mandated by a stroke — the out-of-the-blue variant, the rare kind of “brain attack” (the term preferred by some neurologists) that is most often seen in otherwise healthy, youngish middle-aged people. It’s Fourth of July weekend, 2011 — a beautiful, if hot, morning for a run in the Hudson Valley woods with my son Daniel, back from brief service in the Israeli army. I’m eager to be pushed hard. I’m not even a lapsed middle-aged athlete; I’m truly negligent when it comes to exercise. We’re jogging up a steep path, and my breathing gets deeper and faster. At a particularly tough turn, I pause, hands on knees. “Come on, keep it up, Dad.” I’m panting but don’t want to disappoint. We press on. But I stop again, this time insisting that Daniel run ahead. I rest in the mottled shade and sunlight of the woods until he returns. Then I realize that through my left eye, the world appears paisley — as if I were looking through a patterned curtain. Something is really wrong. We make it back to the car. Daniel takes the wheel. Back home, I take a shower, thinking that cooling off will help. For the first time, a thought flickers. Could this be a stroke? Almost unconsciously, I take half a dozen baby aspirin. I know enough about aspirin’s blood-thinning properties to think this can’t hurt. Copyright 2013 The New York Times Company
Keyword: Stroke
Link ID: 18147 - Posted: 05.14.2013
By ANAHAD O'CONNOR The nation’s largest cardiovascular health organization has a new message for Americans: Owning a dog may protect you from heart disease. The unusual message was contained in a scientific statement published on Thursday by the American Heart Association, which convened a panel of experts to review years of data on the cardiovascular benefits of owning a pet. The group concluded that owning a dog, in particular, was “probably associated” with a reduced risk of heart disease. People who own dogs certainly have more reason to get outside and take walks, and studies show that most owners form such close bonds with their pets that being in their presence blunts the owners’ reactions to stress and lowers their heart rate, said Dr. Glenn N. Levine, the head of the committee that wrote the statement. But most of the evidence is observational, which makes it impossible to rule out the prospect that people who are healthier and more active in the first place are simply more likely to bring a dog or cat into their home. “We didn’t want to make this too strong of a statement,” said Dr. Levine, a professor at the Baylor College of Medicine. “But there are plausible psychological, sociological and physiological reasons to believe that pet ownership might actually have a causal role in decreasing cardiovascular risk.” Nationwide, Americans keep roughly 70 million dogs and 74 million cats as pets. Copyright 2013 The New York Times Company
Keyword: Emotions; Neuroimmunology
Link ID: 18146 - Posted: 05.11.2013
By Puneet Kollipara Identical twin mice sharing the same mazelike environment develop distinct personalities based on how much they explore their surroundings, researchers report in the May 10 Science. After death, those differences were reflected in the animals’ brains. The study “highlights something for which we had some intuition before, but actually quantifies it,” says Fred Gage, a neuroscientist at the Salk Institute for Biological Studies in La Jolla, Calif. Some character and biological differences between identical twins may originate as early as pregnancy. But twins become more and more different as life goes on, even when they grow up together. Scientists have recognized that having distinct experiences within the same environment might boost such personality differences, but that’s difficult to test in humans. Studying it in animals has multiple benefits. “You can keep the genes constant and also keep the environment constant,” says Gerd Kempermann of the Center for Regenerative Therapies Dresden in Germany. “It’s much more controlled than in a human situation.” Researchers led by Kempermann put 40 genetically identical female mice in an elaborate cage and observed their behavior. The cage had multiple levels linked together by tubes and contained toys and other features that the animals could explore. The researchers equipped each mouse with a microchip that tracked its location, using the animals’ movements as a measure of exploratory behavior. Initially, the mice differed only slightly in their tendency to roam. As they grew older, all tended to explore more often, but the differences among the mice grew more pronounced. © Society for Science & the Public 2000 - 2013
Keyword: Epigenetics; Genes & Behavior
Link ID: 18145 - Posted: 05.11.2013
Heidi Ledford Nassir Ghaemi, director of the Mood Disorders Program at Tufts Medical Center in Boston, Massachusetts, has felt shackled by the Diagnostic and Statistical Manual of Mental Disorders (DSM), often called the bible of psychiatry. Some of his depressed patients occasionally show manic behaviour but do not fulfil the DSM’s criteria for a diagnosis of bipolar disorder. Ghaemi is interested in whether such patients might respond better to drugs for bipolar disorder than for depression. But his colleagues warned him against straying from the DSM when he applied for funding at the US National Institute of Mental Health (NIMH), because peer reviewers tended to insist on research that hewed to DSM categories. Ghaemi held off from applying. If NIMH director Thomas Insel has his way, Ghaemi and other mental-health researchers will no longer feel the weight of the DSM. “NIMH will be re-orienting its research away from DSM categories,” Insel wrote in a blog entry on 29 April. The latest edition, the DSM-5, will be unveiled on 22 May at the annual meeting of the American Psychiatric Association in San Francisco, California. Like many psychiatrists, Insel questions whether the DSM’s categories accurately reflect the way the brain works. He is pushing a project that aims to create a new framework that classifies mental-health disorders according to their biological roots. “Going forward, we will be supporting research projects that look across current categories — or sub-divide current categories — to begin to develop a better system,” Insel wrote. The blog post made waves in the media and rattled some psychiatric clinicians and researchers. But Insel says that he has been talking about the issue since 2008. “The word was just still not out there,” he says. Insel says that he has increasingly received complaints from grant applicants who have tried to follow his guidance, only to be shot down by peer reviewers for eschewing DSM scripture. © 2013 Nature Publishing Group
Keyword: Schizophrenia; Depression
Link ID: 18144 - Posted: 05.11.2013
by Claudia M Gold It seems that the National Institute of Mental Health (NIMH) may have dealt a death blow to the recently published Diagnostic and Statistical Manual of Mental Disorders (DSM 5) when the organization declared they would no longer fund research based on the DSM system of diagnosis. The views of NIMH director Thomas Insel were referenced in the recent New York Times article on the subject. His goal was to reshape the direction of psychiatric research to focus on biology, genetics and neuroscience so that scientists can define disorders by their causes, rather than their symptoms. I am no fan of the DSM system, which reduces complex experience to lists of symptoms; focusing on the "what" rather than the "why." However, the NIMH model has limits as well. There seems to be a wish to study mental illness in the same way we study cancer or diabetes. While I certainly have great respect for the complexity of the pancreas, or the process of malignant transformation of cells, trying to understand the brain/mind in an analogous way seems to be an unnecessary and even undesirable reduction of human experience. What is missing from both paradigms is recognition of the relational and historical context of being human. Fortunately there seems to be awareness that neither paradigm is complete. The Times article goes on to say: Dr. Insel is one of a growing number of scientists who think that the field needs an entirely new paradigm for understanding mental disorders, though neither he nor anyone else knows exactly what it will look like. © 2013 NY Times Co.
Keyword: Schizophrenia; Depression
Link ID: 18143 - Posted: 05.11.2013