Chapter 17. Learning and Memory

Follow us on Facebook or subscribe to our mailing list, to receive news updates. Learn more.


Links 101 - 120 of 1894

By Laura Sanders A tussle with COVID-19 can leave people’s brains fuzzy. SARS-CoV-2, the virus behind COVID-19, doesn’t usually make it into the brain directly. But the immune system’s response to even mild cases can affect the brain, new preliminary studies suggest. These reverberating effects may lead to fatigue, trouble thinking, difficulty remembering and even pain, months after the infection is gone. It’s not a new idea. Immune systems gone awry have been implicated in cognitive problems that come with other viral infections such as HIV and influenza, with disorders such as myalgic encephalomyelitis/chronic fatigue syndrome, or ME/CFS, and even from the damaging effects of chemotherapy. What’s different with COVID-19 is the scope of the problem. Millions of people have been infected, says neurologist Avindra Nath of the National Institutes of Health in Bethesda, Md. “We are now faced with a public health crisis,” he says. Sign up for e-mail updates on the latest coronavirus news and research To figure out ways to treat people for the fuzzy thinking, headaches and fatigue that hang around after a bout with COVID-19, scientists are racing to figure out what’s causing these symptoms (SN: 4/27/21). Cognitive neurologist Joanna Hellmuth at the University of California, San Francisco had a head start. As someone who had studied the effects of HIV on the brain, she quickly noted similarities in the neurological symptoms of HIV and COVID-19. The infections paint “the same exact clinical picture,” she says. HIV-related cognitive symptoms have been linked to immune activation in the body, including the brain. “Maybe the same thing is happening in COVID,” Hellmuth says. © Society for Science & the Public 2000–2022.

Keyword: Neuroimmunology; Learning & Memory
Link ID: 28189 - Posted: 02.05.2022

Anastasia Brodovskaya Jaideep Kapur Epilepsy is a disease marked by recurrent seizures, or sudden periods of abnormal, excessive or synchronous neuronal activity in the brain. One in 26 people in the U.S. will develop epilepsy at some point in their life. While people with mild seizures might experience a brief loss of awareness and muscle twitches, more severe seizures could last for several minutes and lead to injury from falling down and losing control of their limbs. Many people with epilepsy also experience memory problems. Patients often experience retrograde amnesia, where they cannot remember what happened immediately before their seizure. Electroconvulsive therapy, a form of treatment for major depression that intentionally triggers small seizures, can also cause retrograde amnesia. So why do seizures often cause memory loss? We are neurology researchers who study the mechanisms behind how seizures affect the brain. Our brain-mapping study found that seizures affect the same circuits of the brain responsible for memory formation. Understand new developments in science, health and technology, each week One of the earliest descriptions of seizures was written on a Babylonian tablet over 3,000 years ago. Seizures can be caused by a number of factors, ranging from abnormalities in brain structure and genetic mutations to infections and autoimmune conditions. Often, the root cause of a seizure isn’t known. The most common type of epilepsy involves seizures that originate in the brain region located behind the ears, the temporal lobe. Some patients with temporal lobe epilepsy experience retrograde amnesia and are unable to recall events immediately before their seizure. © 2010–2022, The Conversation US, Inc.

Keyword: Epilepsy; Learning & Memory
Link ID: 28187 - Posted: 02.05.2022

ByRodrigo Pérez Ortega A good workout doesn’t just boost your mood—it also boosts the brain’s ability to create new neurons. But exactly how this happens has puzzled researchers for years. “It’s been a bit of a black box,” says Tara Walker, a neuroscientist at the University of Queensland’s Brain Institute. Now, Walker and her colleagues think they have found a key: the chemical element selenium. During exercise, mice produce a protein containing selenium that helps their brains grow new neurons, the team reports today. Scientists may also be able to harness the element to help reverse cognitive decline due to old age and brain injury, the authors say. It’s a “fantastic” study, says Bárbara Cardoso, a nutritional biochemist at Monash University’s Victorian Heart Institute. Her own research has shown selenium—which is found in Brazil nuts, grains, and some legumes—improves verbal fluency and the ability to copy drawings correctly in older adults. “We could start thinking about selenium as a strategy” to treat or prevent cognitive decline in those who cannot exercise or are more vulnerable to selenium deficiency, she says, such as older adults, and stroke and Alzheimer’s disease patients. In 1999, researchers reported that running stimulates the brain to make new neurons in the hippocampus, a region involved in learning and memory. But which molecules were released into the bloodstream to spark this “neurogenesis” remained unclear. So 7 years ago, Walker and her colleagues screened the blood plasma of mice that had exercised on a running wheel in their cages for 4 days, versus mice that had no wheel. The team identified 38 proteins whose levels increased after the workout. © 2022 American Association for the Advancement of Science.

Keyword: Learning & Memory; Obesity
Link ID: 28185 - Posted: 02.05.2022

Dan Robitzski As the coronavirus pandemic continues, scientists are racing to understand the underlying causes and implications of long COVID, the umbrella term for symptoms that persist for at least 12 weeks but often last even longer and affect roughly 30 percent of individuals who contract COVID-19. Evidence for specific risk factors such as diabetes and the presence of autoantibodies is starting to emerge, but throughout the pandemic, one assumption has been that an important indicator of whether a COVID-19 survivor is likely to develop long COVID is the severity of their acute illness. However, a preprint shared online on January 10 suggests that even mild SARS-CoV-2 infections may lead to long-term neurological symptoms associated with long COVID such as cognitive impairment and difficulties with attention and memory, a suite of symptoms often lumped together as “brain fog.” In the study, which has not yet been peer-reviewed, scientists led by Stanford University neurologist Michelle Monje identified a pathway in COVID-19–infected mice and humans that almost perfectly matches the inflammation thought to cause chemotherapy-related cognitive impairment (CRCI), also known as “chemo fog,” following cancer treatments. On top of that, the preprint shows that the neuroinflammation pathway can be triggered even without the coronavirus infecting a single brain cell. As far back as March 2020, Monje feared that cytokine storms caused by the immune response to SARS-CoV-2 would cause the same neuroinflammation and symptoms associated with CRCI, she tells The Scientist. But because her lab doesn’t study viral infections, she had no way to test her hypothesis until other researchers created the appropriate models. In the study, Monje and her colleagues used a mouse model for mild SARS-CoV-2 infections developed at the lab of Yale School of Medicine biologist and study coauthor Akiko Iwasaki as well as brain tissue samples taken from people who had COVID-19 when they died to demonstrate that mild infections can trigger inflammation in the brain. © 1986–2022 The Scientist.

Keyword: Learning & Memory
Link ID: 28182 - Posted: 02.02.2022

By Jason DeParle WASHINGTON — A study that provided poor mothers with cash stipends for the first year of their children’s lives appears to have changed the babies’ brain activity in ways associated with stronger cognitive development, a finding with potential implications for safety net policy. The differences were modest — researchers likened them in statistical magnitude to moving to the 75th position in a line of 100 from the 81st — and it remains to be seen if changes in brain patterns will translate to higher skills, as other research offers reason to expect. Still, evidence that a single year of subsidies could alter something as profound as brain functioning highlights the role that money may play in child development and comes as President Biden is pushing for a much larger program of subsidies for families with children. “This is a big scientific finding,” said Martha J. Farah, a neuroscientist at the University of Pennsylvania, who conducted a review of the study for the Proceedings of the National Academy of Sciences, where it was published on Monday. “It’s proof that just giving the families more money, even a modest amount of more money, leads to better brain development.” Another researcher, Charles A. Nelson III of Harvard, reacted more cautiously, noting the full effect of the payments — $333 a month — would not be clear until the children took cognitive tests. While the brain patterns documented in the study are often associated with higher cognitive skills, he said, that is not always the case. © 2022 The New York Times Company

Keyword: Development of the Brain; Learning & Memory
Link ID: 28172 - Posted: 01.26.2022

Veronique Greenwood In the moment between reading a phone number and punching it into your phone, you may find that the digits have mysteriously gone astray — even if you’ve seared the first ones into your memory, the last ones may still blur unaccountably. Was the 6 before the 8 or after it? Are you sure? Maintaining such scraps of information long enough to act on them draws on an ability called visual working memory. For years, scientists have debated whether working memory has space for only a few items at a time, or if it just has limited room for detail: Perhaps our mind’s capacity is spread across either a few crystal-clear recollections or a multitude of more dubious fragments. The uncertainty in working memory may be linked to a surprising way that the brain monitors and uses ambiguity, according to a recent paper in Neuron from neuroscience researchers at New York University. Using machine learning to analyze brain scans of people engaged in a memory task, they found that signals encoded an estimate of what people thought they saw — and the statistical distribution of the noise in the signals encoded the uncertainty of the memory. The uncertainty of your perceptions may be part of what your brain is representing in its recollections. And this sense of the uncertainties may help the brain make better decisions about how to use its memories. The findings suggests that “the brain is using that noise,” said Clayton Curtis, a professor of psychology and neuroscience at NYU and an author of the new paper. All Rights Reserved © 2022

Keyword: Learning & Memory
Link ID: 28163 - Posted: 01.19.2022

Nicola Davis It’s a cold winter’s day, and I’m standing in a room watching my dog stare fixedly at two flower pots. I’m about to get an answer to a burning question: is my puppy a clever girl? Dogs have been our companions for millennia, domesticated sometime between 15,000 and 30,000 years ago. And the bond endures: according to the latest figures from the Pet Food Manufacturers Association 33% of households in the UK have a dog. But as well as fulfilling roles from Covid detection to lovable family rogue, scientists investigating how dogs think, express themselves and communicate with humans say dogs can also teach us about ourselves. And so I am here at the dog cognition centre at the University of Portsmouth with Calisto, the flat-coated retriever, and a pocket full of frankfurter sausage to find out how. We begin with a task superficially reminiscent of the cup and ballgame favoured by small-time conmen. Amy West, a PhD student at the centre, places two flower pots a few metres in front of Calisto, and appears to pop something under each. However, only one actually contains a tasty morsel. West points at the pot under which the sausage lurks, and I drop Calisto’s lead. The puppy makes a beeline for the correct pot. But according to Dr Juliane Kaminski, reader in comparative psychology at the University of Portsmouth, this was not unexpected. “A chimpanzee is our closest living relative – they ignore gestures like these coming from humans entirely,” she says. “But dogs don’t.” © 2022 Guardian News & Media Limited

Keyword: Learning & Memory; Evolution
Link ID: 28162 - Posted: 01.19.2022

Sophie Fessl Mice raised in an enriched environment are better able to adapt and change than mice raised in standard cages, but why they show this higher brain plasticity has not been known. Now, a study published January 11 in Cell Reports finds that the environment could act indirectly: living in enriched environments changes the animals’ gut microbiota, which appears to modulate plasticity. The study “provides very interesting new insights into possible beneficial effects of environmental enrichment on the brain that might act via the gut,” writes Anthony Hannan, a neuroscientist at the Florey Institute of Neuroscience and Mental Health in Australia who was not involved in the study, in an email to The Scientist. “This new study has implications for how we might understand the beneficial effects of environmental enrichment, and its relevance to cognitive training and physical activity interventions in humans.” In previous studies, mice raised in what scientists call an enriched environment—one in which they have more opportunities to explore, interact with others, and receive sensory stimulation than they would in standard laboratory enclosures—have been better able to modify their neuronal circuits in response to external stimuli than mice raised in smaller, plainer cages. Paola Tognini, a neuroscientist at the University of Pisa and lead author of the new study, writes in an email to The Scientist that she “wondered if endogenous factors (signals coming from inside our body instead of the external world), such as the signals coming from the intestine, could also influence brain plasticity.” © 1986–2022 The Scientist.

Keyword: Learning & Memory; Obesity
Link ID: 28159 - Posted: 01.19.2022

Melinda Wenner Moyer Like many paediatricians, Dani Dumitriu braced herself for the impact of the SARS-CoV-2 coronavirus when it first surged in her wards. She was relieved when most newborn babies at her hospital who had been exposed to COVID-19 seemed to do just fine. Knowledge of the effects of Zika and other viruses that can cause birth defects meant that doctors were looking out for problems. But hints of a more subtle and insidious trend followed close behind. Dumitriu and her team at the NewYork–Presbyterian Morgan Stanley Children’s Hospital in New York City had more than two years of data on infant development — since late 2017, they had been analysing the communication and motor skills of babies up to six months old. Dumitriu thought it would be interesting to compare the results from babies born before and during the pandemic. She asked her colleague Morgan Firestein, a postdoctoral researcher at Columbia University in New York City, to assess whether there were neurodevelopmental differences between the two groups. A few days later, Firestein called Dumitriu in a panic. “She was like, ‘We’re in a crisis, I don’t know what to do, because we not only have an effect of a pandemic, but it’s a significant one,’” Dumitriu recalled. She was up most of that night, poring over the data. The infants born during the pandemic scored lower, on average, on tests of gross motor, fine motor and communication skills compared with those born before it (both groups were assessed by their parents using an established questionnaire)1. It didn’t matter whether their birth parent had been infected with the virus or not; there seemed to be something about the environment of the pandemic itself. Dumitriu was stunned. “We were like, oh, my God,” she recalled. “We’re talking about hundreds of millions of babies.” Although children have generally fared well when infected with SARS-CoV-2, preliminary research suggests that pandemic-related stress during pregnancy could be negatively affecting fetal brain development in some children. Moreover, frazzled parents and carers might be interacting differently or less with their young children in ways that could affect a child’s physical and mental abilities.

Keyword: Development of the Brain; Learning & Memory
Link ID: 28152 - Posted: 01.12.2022

By Lisa Sanders, M.D. The mother stood in the baggage-claim area of the Buffalo Niagara International Airport, waiting for her 37-year-old son, who had just flown in from North Carolina. The carousel was nearly empty by the time she caught sight of him. She was shocked by how sick he looked. His face was pale and thin, his hair and clothes rumpled as if he felt too awful to care. Most surprising of all: He was being rolled toward her in a wheelchair. “I had some trouble with the stairs,” he explained. He thanked the attendant and then struggled to get to his feet. He didn’t make it. Before he got more than a few inches off the seat, his arms and then his legs began to shake and wobble, and he fell heavily back into the chair. His mother collected his bag and pushed him out to where her husband was waiting in the car. On the drive home, the young man struggled to explain what was going on. He had always considered himself to be pretty strong and healthy, but these past few weeks had been rough. It started in his legs. He felt wobbly. When he walked, his hips, legs and especially his feet felt as if they might not be able to hold him up. He saw his physician assistant about it — he worried that it was caused by the cholesterol-lowering medication he had started taking — but the P.A. assured him it wasn’t. He was running a few times a week, but he had to stop because his legs were done well before the run was. And he didn’t feel as sharp as he used to be. His brain seemed foggy and slow. Then this morning he had trouble climbing the stairs to the plane. That was scary. The guy behind him helped by holding up his backpack, but his feet felt like dead weights. He had to use his arms to help get his body up high enough to take each step. Once on the plane, he supported himself on the headrests to get to his assigned seat. They offered the wheelchair when he arrived in Buffalo, and he gratefully accepted. His mother tentatively asked if he thought he should see a doctor. She knew he hated it when she tried to tell him what to do. He had flown up to see a football game with her ex-husband, his father, and a hockey game with his stepbrother. If he didn’t feel any better after that, he conceded, it would be time to see a doctor. © 2022 The New York Times Company

Keyword: Movement Disorders; Drug Abuse
Link ID: 28150 - Posted: 01.12.2022

Don Arnold All memory storage devices, from your brain to the RAM in your computer, store information by changing their physical qualities. Over 130 years ago, pioneering neuroscientist Santiago Ramón y Cajal first suggested that the brain stores information by rearranging the connections, or synapses, between neurons. Since then, neuroscientists have attempted to understand the physical changes associated with memory formation. But visualizing and mapping synapses is challenging to do. For one, synapses are very small and tightly packed together. They’re roughly 10 billion times smaller than the smallest object a standard clinical MRI can visualize. Furthermore, there are approximately 1 billion synapses in the mouse brains researchers often use to study brain function, and they’re all the same opaque to translucent color as the tissue surrounding them. A new imaging technique my colleagues and I developed, however, has allowed us to map synapses during memory formation. We found that the process of forming new memories changes how brain cells are connected to one another. While some areas of the brain create more connections, others lose them. Mapping new memories in fish Previously, researchers focused on recording the electrical signals produced by neurons. While these studies have confirmed that neurons change their response to particular stimuli after a memory is formed, they couldn’t pinpoint what drives those changes. © 2010–2022, The Conversation US, Inc.

Keyword: Learning & Memory
Link ID: 28149 - Posted: 01.12.2022

By Maria Temming It might seem like a fish needs a car like — well, like a fish needs a bicycle. But a new experiment suggests that fish actually make pretty good drivers. In the experiment, several goldfish learned to drive what is essentially the opposite of a submarine — a tank of water on wheels — to destinations in a room. That these fish could maneuver on land suggests that fishes’ understanding of space and navigation is not limited to their natural environment — and perhaps has something in common with landlubber animals’ internal sense of direction, researchers report in the Feb. 15 Behavioural Brain Research. Researchers at Ben-Gurion University of the Negev in Beer-Sheva, Israel taught six goldfish to steer a motorized water tank. The fishmobile was equipped with a camera that continually tracked a fish driver’s position and orientation inside the tank. Whenever the fish swam near one of the tank’s walls, facing outward, the vehicle trundled off in that direction. This goldfish knows how to use its wheels. Successfully navigating in a tank on land suggests that the animals understand space and direction in a way that lets them explore even in unfamiliar habitats. Fish were schooled on how to drive during about a dozen 30-minute sessions. The researchers trained each fish to drive from the center of a small room toward a pink board on one wall by giving the fish a treat whenever it reached the wall. During their first sessions, the fish averaged about 2.5 successful trips to the target. During their final sessions, fish averaged about 17.5 successful trips. By the end of driver’s ed, the animals also took faster, more direct routes to their goal. © Society for Science & the Public 2000–2022.

Keyword: Learning & Memory
Link ID: 28148 - Posted: 01.12.2022

Leonard Mlodinow Charles Darwin created the most successful theory in the history of biology: the theory of evolution. He was also responsible for another grand theory: the theory of emotion, which dominated his field for more than a century. That theory was dead wrong. The most important tenet of his theory was that the mind consists of two competing forces, the rational and the emotional. He believed emotions played a constructive role in the lives of non-human animals, but in humans emotions were a vestige whose usefulness had been largely superseded by the evolution of reason. We now know that, on the contrary, emotions enhance our process of reasoning and aid our decision-making. In fact, we can’t make decisions, or even think, without being influenced by our emotions. Consider a pioneering 2010 study in which researchers analysed the work of 118 professional traders in stocks, bonds and derivatives at four investment banks. Some were highly successful, but many were not. The researchers’ goal was to understand what differentiated the two groups. Their conclusion? They had different attitudes toward the role of emotion in their job. The relatively less successful traders for the most part denied that emotion played a significant role. They tried to suppress their emotions, while at the same time denying that emotions had an effect on their decision-making. The most successful traders, in contrast, had a different attitude. They showed a great willingness to reflect on their emotion-driven behaviour. They recognised that emotion and good decision-making were inextricably linked. Accepting that emotions were necessary for high performance, they “tended to reflect critically about the origin of their intuitions and the role of emotion”. © 2021 Guardian News & Media Limited

Keyword: Emotions; Learning & Memory
Link ID: 28136 - Posted: 01.05.2022

By Abdulrahman Olagunju How does our brain know that “this” follows “that”? Two people meet, fall in love and live happily ever after—or sometimes not. The sequencing of events that takes place in our head—with one thing coming after another—may have something to do with so-called time cells recently discovered in the human hippocampus. The research provides evidence for how our brain knows the start and end of memories despite time gaps in the middle. As these studies continue, the work could lead to strategies for memory restoration or enhancement. The research has focused on “episodic memory,” the ability to remember the “what, where and when” of a past experience, such as the recollection of what you did when you woke up today. It is part of an ongoing effort to identify how the organ creates such memories. A team led by Leila Reddy, a neuroscience researcher at the French National Center for Scientific Research, sought to understand how human neurons in the hippocampus represent temporal information during a sequence of learning steps to demystify the functioning of time cells in the brain. In a study published this summer in the Journal of Neuroscience, Reddy and her colleagues found that, to organize distinct moments of experience, human time cells fire at successive moments during each task. The study provided further confirmation that time cells reside in the hippocampus, a key memory processing center. They switch on as events unfold, providing a record of the flow of time in an experience. “These neurons could play an important role in how memories are represented in the brain,” Reddy says. “Understanding the mechanisms for encoding time and memory will be an important area of research.” © 2021 Scientific American

Keyword: Learning & Memory; Attention
Link ID: 28133 - Posted: 12.31.2021

Sofia Moutinho When Thomas Edison hit a wall with his inventions, he would nap in an armchair while holding a steel ball. As he started to fall asleep and his muscles relaxed, the ball would strike the floor, waking him with insights into his problems. Or so the story goes. Now, more than 100 years later, scientists have repeated the trick in a lab, revealing that the famous inventor was on to something. People following his recipe tripled their chances of solving a math problem. The trick was to wake up in the transition between sleep and wakefulness, just before deep sleep. “It is a wonderful study,” says Ken Paller, a cognitive neuroscientist at Northwestern University who was not part of the research. Prior work has shown that passing through deep sleep stages helps with creativity, he notes, but this is the first to explore in detail the sleep-onset period and its role in problem-solving. In this transitional period, we are not quite awake, but also not deeply asleep. It can be as short as a minute and occurs right when we start to doze off. Our muscles relax, and we have dreamlike visions or thoughts called hypnagogia, generally related to recent experiences. This phase slips by unnoticed most of the time unless it is interrupted by waking. Like Edison, surrealist painter Salvador Dalí believed interrupting sleep’s onset could boost creativity. (He used a heavy key instead of a metal ball.) To see whether Dalí and Edison were right, researchers recruited more than 100 easy sleepers. The team gave them a math test that required them to convert strings of eight digits into new strings of seven by using specific rules in a stepwise manner, such as “repeat the number if the previous and next digit are identical.” The volunteers weren’t told that there was an easier way to get the right answers by following a hidden rule: The second number in their final string was always the same as the last number in the same string. © 2021 American Association for the Advancement of Science.

Keyword: Sleep; Attention
Link ID: 28106 - Posted: 12.11.2021

By Elizabeth Preston A person trying to learn the way around a new neighborhood might spend time studying a map. You would probably not benefit from being carried rapidly through the air, upside-down in the dark. Yet that’s how some baby bats learn to navigate, according to a study published last month in Current Biology. As their mothers tote them on nightly trips between caves and certain trees, the bat pups gain the skills they need to get around when they grow up. Mothers of many bat species carry their young while flying, said Aya Goldshtein, a behavioral ecologist at the Max Planck Institute of Animal Behavior in Konstanz, Germany. Egyptian fruit bats, for example, are attached to their mothers continuously for the first three weeks of life. While a mother searches for food, her pup clings to her body with two feet and its jaw, latching its teeth around her nipple. Mothers can still be seen flying with older pups that weigh 40 percent of what they do. It hadn’t been clear why the moms go to this length, instead of leaving pups in the cave where they roost, as some other species do. Dr. Goldshtein worked with Lee Harten, a behavioral ecologist at Tel Aviv University in Israel, where both she and Dr. Goldshtein were graduate students at the time in the lab of Yossi Yovel, a study co-author, to make sense of this maternal mystery. The researchers captured Egyptian fruit bat mothers and pups from a cave just outside Tel Aviv. They attached a tag holding a radio transmitter and miniature GPS device to each bat’s fur that would drop off after a couple of weeks. Then, the researchers brought the bats back to their cave. To track the bats, Dr. Harten held an antenna while standing on the roof of a 10-story building with a view of the cave. She directed Dr. Goldshtein, who was on foot or in a car with her own antenna, to follow the radio signals of bat pairs as they flew out at night. But again and again, there was a problem: The pup’s movement would suddenly stop, while the mother’s signal disappeared. “At the beginning we thought that we were doing our job wrong, and just losing the bats,” Dr. Harten said. © 2021 The New York Times Company

Keyword: Learning & Memory; Animal Migration
Link ID: 28102 - Posted: 12.08.2021

Alison Abbott There Is Life After the Nobel Prize Eric Kandel Columbia Univ. Press (2021) In 1996, Denise Kandel warned her husband that were he to win the Nobel prize for his pioneering work on memory, then it should be later rather than sooner. Laureates too often turn into socialites, she warned, and stop contributing to the intellectual life of science. Just four years later, Eric Kandel shared the 2000 Nobel Prize in Physiology or Medicine. He was then 71, an age when he could legitimately have rested on his laurels. But resting is not among Kandel’s many strengths. His new book, There Is Life After the Nobel Prize, outlines his achievements of the past couple of decades — numerous enough to dispel Denise’s fears, he writes. It is hard to disagree. The volume adds to Kandel’s respected literary oeuvre, which ranges from neuroscience textbooks to highly original popular science. But it is slight, and feels like a coda. In it, he summarises his post-Nobel research (on learning and memory deficits in addiction, schizophrenia and ageing), writing and public outreach. And he acknowledges colleagues and sponsors of his long career, particularly the Howard Hughes Medical Institute in Chevy Chase, Maryland, and Columbia University in New York City, where he remains a professor and institute director. A fuller and more poignant autobiography can be found in Kandel’s 2006 book In Search of Memory. There, he explains why his traumatic childhood in Austria drew him to study the mechanisms of memory. That book also presents a marvellous history of neuroscience. Making sense Kandel was born in 1929 in Vienna. His family was Jewish and owned a toy shop. When Hitler annexed Austria in 1938, his parents began their year-long effort to emigrate. They finally arrived in New York shortly before the outbreak of World War II, physically unharmed but psychologically traumatized. © 2021 Springer Nature Limited

Keyword: Learning & Memory
Link ID: 28100 - Posted: 12.08.2021

By Pam Belluck AURORA, Ill. — There is sobering evidence of Samantha Lewis’s struggle with long Covid on her bathroom mirror. Above the sink, she has posted a neon pink index card scrawled with nine steps (4. Wet brush 5. Toothpaste) reminding her how to brush and floss her teeth. It is one of many strategies Ms. Lewis, 34, has learned from “cognitive rehab,” an intensive therapy program for Covid-19 survivors whose lives have been upended by problems like brain fog, memory lapses, dizziness and debilitating fatigue. Nearly two years into the pandemic, advances have been made in treating Covid itself, but long Covid — a constellation of lingering health problems that some patients experience — remains little understood. Post-Covid clinics around the country are trying different approaches to help patients desperate for answers, but there is little data on outcomes so far, and doctors say it is too soon to know what might work, and for which patients. While some physical symptoms of long Covid, like shortness of breath or nausea, can be addressed with medication, cognitive issues are more challenging. Few drugs exist, and while some deficits can rebound with time, they can also be exacerbated by resuming activities too soon or intensively. Over several months, The New York Times visited Ms. Lewis, interviewed her doctors, attended her therapy sessions and read her medical records. Before she was infected with the coronavirus in October 2020, experiencing a modest initial illness that did not require hospitalization, she was successfully juggling a demanding, detail-oriented job while raising a child with autism and attention deficit hyperactivity disorder. But this summer, she scored 25 on a 30-point assessment, placing her in a pre-dementia category called mild cognitive impairment. © 2021 The New York Times Company

Keyword: Learning & Memory
Link ID: 28098 - Posted: 12.04.2021

by Charles Q. Choi One injection of a potential new gene therapy for Angelman syndrome forestalls many of the neurodevelopmental condition’s key traits, according to early tests in mice. “While additional pharmacology and safety studies are needed, our viral vector can potentially provide transformative therapeutic relief with a single dose,” says lead investigator Benjamin Philpot, professor of neuroscience at the University of North Carolina at Chapel Hill. Angelman syndrome, which affects about one in 20,000 children, is associated with significant developmental delays and, often, autism. It arises from mutations or deletions in the maternal copy of the UBE3A gene, which encodes a protein that helps regulate the levels of other important proteins. There are no treatments specifically for Angelman syndrome, but several gene therapies are under development. One in clinical trials requires repeat injections in the spine and has shown serious side effects at high doses. These therapies all aim to restore UBE3A function in neurons. One challenge, though, is that neurons produce several variants, or ‘isoforms,’ of the UBE3A protein that vary slightly in length; in mice, for example, neurons make two isoforms in a ratio of about four short forms for every long one. In contrast to other gene therapies, the new one generates short and long forms of the UBE3A protein at nearly the same ratio as is seen in mouse neurons. Such proportions “may be important for therapeutic efficacy,” says Eric Levine, professor of neuroscience at the University of Connecticut in Farmington, who was not involved in this study. © 2021 Simons Foundation

Keyword: Autism; Genes & Behavior
Link ID: 28093 - Posted: 12.01.2021

Anil Ananthaswamy How our brain, a three-pound mass of tissue encased within a bony skull, creates perceptions from sensations is a long-standing mystery. Abundant evidence and decades of sustained research suggest that the brain cannot simply be assembling sensory information, as though it were putting together a jigsaw puzzle, to perceive its surroundings. This is borne out by the fact that the brain can construct a scene based on the light entering our eyes, even when the incoming information is noisy and ambiguous. Consequently, many neuroscientists are pivoting to a view of the brain as a “prediction machine.” Through predictive processing, the brain uses its prior knowledge of the world to make inferences or generate hypotheses about the causes of incoming sensory information. Those hypotheses — and not the sensory inputs themselves — give rise to perceptions in our mind’s eye. The more ambiguous the input, the greater the reliance on prior knowledge. “The beauty of the predictive processing framework [is] that it has a really large — sometimes critics might say too large — capacity to explain a lot of different phenomena in many different systems,” said Floris de Lange, a neuroscientist at the Predictive Brain Lab of Radboud University in the Netherlands. However, the growing neuroscientific evidence for this idea has been mainly circumstantial and is open to alternative explanations. “If you look into cognitive neuroscience and neuro-imaging in humans, [there’s] a lot of evidence — but super-implicit, indirect evidence,” said Tim Kietzmann of Radboud University, whose research lies in the interdisciplinary area of machine learning and neuroscience. All Rights Reserved © 2021

Keyword: Attention; Vision
Link ID: 28080 - Posted: 11.17.2021