Chapter 6. Evolution of the Brain and Behavior

Follow us on Facebook or subscribe to our mailing list, to receive news updates. Learn more.


Links 1 - 20 of 2379

By Carl Zimmer In the early 1900s, primatologists noticed a group of apes in central Africa with a distinctly slender build; they called them “pygmy chimpanzees.” But as the years passed, it became clear that those animals, now known as bonobos, were profoundly different from chimpanzees. Chimpanzee societies are dominated by males that kill other males, raid the territory of neighboring troops and defend their own ground with border patrols. Male chimpanzees also attack females to coerce them into mating, and sometimes even kill infants. Among bonobos, in contrast, females are dominant. Males do not go on patrols, form alliances or kill other bonobos. And bonobos usually resolve their disputes with sex — lots of it. Bonobos became famous for showing that nature didn’t always have to be red in tooth and claw. “Bonobos are an icon for peace and love, the world’s ‘hippie chimps,’” Sally Coxe, a conservationist, said in 2006. But these sweeping claims were not based on much data. Because bonobos live in remote, swampy rainforests, it has been much more difficult to observe them in the wild than chimpanzees. More recent research has shown that bonobos live a more aggressive life than their reputation would suggest. In a study based on thousands of hours of observations in the wild published on Friday, for example, researchers found that male bonobos commit acts of aggression nearly three times as often as male chimpanzees do. “There is no ‘hippie ape,’” said Maud Mouginot, a biological anthropologist at Boston University who led the analysis. As our closest living relatives, bonobos and chimpanzees can offer us clues about the roots of human behavior. We and the two species share a common ancestor that lived about 7 million years ago. About 5 million years later, bonobos split off from chimpanzees. © 2024 The New York Times Company

Keyword: Aggression; Evolution
Link ID: 29256 - Posted: 04.13.2024

By Maria Popova I once dreamed a kiss that hadn’t yet happened. I dreamed the angle at which our heads tilted, the fit of my fingers behind her ear, the exact pressure exerted on the lips by this transfer of trust and tenderness. Freud, who catalyzed the study of dreams with his foundational 1899 treatise, would have discounted this as a mere chimera of the wishful unconscious. But what we have since discovered about the mind — particularly about the dream-rich sleep state of rapid-eye movement, or REM, unknown in Freud’s day — suggests another possibility for the adaptive function of these parallel lives in the night. One cold morning not long after the kiss dream, I watched a young night heron sleep on a naked branch over the pond in Brooklyn Bridge Park, head folded into chest, and found myself wondering whether birds dream. The recognition that nonhuman animals dream dates at least as far back as the days of Aristotle, who watched a sleeping dog bark and deemed it unambiguous evidence of mental life. But by the time Descartes catalyzed the Enlightenment in the 17th century, he had reduced other animals to mere automatons, tainting centuries of science with the assumption that anything unlike us is inherently inferior. In the 19th century, when the German naturalist Ludwig Edinger performed the first anatomical studies of the bird brain and discovered the absence of a neocortex — the more evolutionarily nascent outer layer of the brain, responsible for complex cognition and creative problem-solving — he dismissed birds as little more than Cartesian puppets of reflex. This view was reinforced in the 20th century by the deviation, led by B.F. Skinner and his pigeons, into behaviorism — a school of thought that considered behavior a Rube Goldberg machine of stimulus and response governed by reflex, disregarding interior mental states and emotional response. © 2024 The New York Times Company

Keyword: Sleep; Evolution
Link ID: 29216 - Posted: 03.26.2024

Ian Sample Science editor Dogs understand what certain words stand for, according to researchers who monitored the brain activity of willing pooches while they were shown balls, slippers, leashes and other highlights of the domestic canine world. The finding suggests that the dog brain can reach beyond commands such as “sit” and “fetch”, and the frenzy-inducing “walkies”, to grasp the essence of nouns, or at least those that refer to items the animals care about. “I think the capacity is there in all dogs,” said Marianna Boros, who helped arrange the experiments at Eötvös Loránd University in Hungary. “This changes our understanding of language evolution and our sense of what is uniquely human.” Scientists have long been fascinated by whether dogs can truly learn the meanings of words and have built up some evidence to back the suspicion. A survey in 2022 found that dog owners believed their furry companions responded to between 15 and 215 words. More direct evidence for canine cognitive prowess came in 2011 when psychologists in South Carolina reported that after three years of intensive training, a border collie called Chaser had learned the names of more than 1,000 objects, including 800 cloth toys, 116 balls and 26 Frisbees. However, studies have said little about what is happening in the canine brain when it processes words. To delve into the mystery, Boros and her colleagues invited 18 dog owners to bring their pets to the laboratory along with five objects the animals knew well. These included balls, slippers, Frisbees, rubber toys, leads and other items. At the lab, the owners were instructed to say words for objects before showing their dog either the correct item or a different one. For example, an owner might say “Look, here’s the ball”, but hold up a Frisbee instead. The experiments were repeated multiple times with matching and non-matching objects. © 2024 Guardian News & Media Limited

Keyword: Language; Learning & Memory
Link ID: 29214 - Posted: 03.26.2024

By Darren Incorvaia Be it an arched eyebrow, a shaken head or a raised finger, humans wordlessly communicate complex ideas through gestures every day. This ability is rare in the animal kingdom, having been observed only in primates (SN: 8/10/10). Scientists now might be able to add a feathered friend to the club. Researchers have observed Japanese tits making what they call an “after you” gesture: A bird flutters its wings, cuing its mate to enter the nest first. The finding, reported in the March 25 Current Biology, “shows that Japanese tits not only use wing fluttering as a symbolic gesture, but also in a complex social context involving a sender, receiver and a specific goal, much like how humans communicate,” says biologist Toshitaka Suzuki of the University of Tokyo. Suzuki has been listening in on the calls of Japanese tits (Parus minor) for more than 17 years. During his extensive time in the field, he noticed that Japanese tits bringing food to the nest would sometimes perch on a branch and flutter their wings. At that point, their partners would enter the nest with the flutterer close behind. “This led me to investigate whether this behavior fulfills the criteria of gestures,” Suzuki says. Suzuki and Norimasa Sugita, a researcher at Tokyo’s National Museum of Nature and Science, observed eight mated pairs make 321 trips to their nests. A pattern quickly emerged: Females fluttered their wings far more often than males, with six females shaking it up while only one male did. Females almost always entered the nest first — unless they fluttered their wings. Then the males went first. © Society for Science & the Public 2000–2024.

Keyword: Animal Communication; Evolution
Link ID: 29213 - Posted: 03.26.2024

Ian Sample Science editor Dogs understand what certain words stand for, according to researchers who monitored the brain activity of willing pooches while they were shown balls, slippers, leashes and other highlights of the domestic canine world. The finding suggests that the dog brain can reach beyond commands such as “sit” and “fetch”, and the frenzy-inducing “walkies”, to grasp the essence of nouns, or at least those that refer to items the animals care about. “I think the capacity is there in all dogs,” said Marianna Boros, who helped arrange the experiments at Eötvös Loránd University in Hungary. “This changes our understanding of language evolution and our sense of what is uniquely human.” Scientists have long been fascinated by whether dogs can truly learn the meanings of words and have built up some evidence to back the suspicion. A survey in 2022 found that dog owners believed their furry companions responded to between 15 and 215 words. More direct evidence for canine cognitive prowess came in 2011 when psychologists in South Carolina reported that after three years of intensive training, a border collie called Chaser had learned the names of more than 1,000 objects, including 800 cloth toys, 116 balls and 26 Frisbees. However, studies have said little about what is happening in the canine brain when it processes words. To delve into the mystery, Boros and her colleagues invited 18 dog owners to bring their pets to the laboratory along with five objects the animals knew well. These included balls, slippers, Frisbees, rubber toys, leads and other items. © 2024 Guardian News & Media Limited

Keyword: Language; Evolution
Link ID: 29212 - Posted: 03.23.2024

By Lucy Cooke When Frans de Waal was a psychology student at Nijmegen University (renamed in 2004 to Radboud University), in the Netherlands, he was tasked with looking after the department’s resident chimpanzees—Koos and Nozem. De Waal couldn’t help but notice how his charges became sexually aroused in the presence of his fellow female students. So, one day, de Waal decided to don a skirt, a pair of heels, and speak “in a high-pitched voice” to test their response. The chimps remained resolutely unstimulated by de Waal’s drag act, leading the young scientist to conclude there must be more to primate sexual discrimination than previously thought. De Waal died from stomach cancer on March 14 at his home in Georgia. He was 75. One of de Waal’s first forays into scientific experimentation demonstrates the playful curiosity and taboo-busting that underscored his extraordinary career as a primatologist. He was the recipient of numerous high-profile awards from the prestigious E.O. Wilson Literary Science Award to the Ig Nobel Prize—a satirical honor for research that makes people laugh and think. De Waal won the latter, with equal pride, for co-authoring a paper on chimpanzees’ tendency to recognize bums better than faces. It was this combination of humor, compassion, and iconoclastic thinking that drew me to his work. I first met him through his popular writing. The acclaimed primatologist was author of hundreds of peer-reviewed academic papers, but he was also that rare genius who could translate the complexities of his research into a highly digestible form, readily devoured by the masses. He was the author of 16 books, translated into over 20 languages. His public lectures were laced with deadpan humor, and a joy to attend. He saw no tension between being taken seriously as a pioneering scientist and hosting a Facebook page devoted to posting funny animal content. De Waal just loved watching animals. He was, by his own admission, a born naturalist. Growing up in a small town in southern Netherlands, he’d bred stickleback fish and raised jackdaw birds. So, it was only natural he’d wind up scrutinizing animal behavior for a career. What set de Waal’s observations apart was his ability to do so with fresh eyes. Where others could only see what they expected to see, de Waal managed to study primates outside of the accepted paradigms of the time. © 2024 NautilusNext Inc.,

Keyword: Evolution; Emotions
Link ID: 29208 - Posted: 03.23.2024

By Shaena Montanari When Nacho Sanguinetti-Scheck came across a seal study in Science in 2023, he saw it as confirmation of the “wild” research he had recently been doing himself. In the experiment, the researchers had attached portable, noninvasive electroencephalogram caps, custom calibrated to sense brain waves through blubber, to juvenile northern elephant seals. After testing the caps on five seals in an outdoor pool, the team attached the caps to eight seals free-swimming in the ocean. The results were striking: In the pool, the seals slept for six hours a day, but in the open ocean, they slept for just about two. And when seals were in REM sleep in the ocean, they flipped belly up and slowly spiraled downward, hundreds of meters below the surface. It was “one of my favorite papers of the past years,” says Sanguinetti-Scheck, a Harvard University neuroscience postdoctoral researcher who studies rodent behavior in the wild. “It’s just beautiful.” It was also the kind of experiment that needed to be done beyond the confines of a lab setting, he says. “You cannot see that in a pool.” Sanguinetti-Scheck is part of a growing cadre of researchers who champion the importance of studying animal behavior in the wild. Studying animals in the environment in which they evolved, these researchers say, can provide neuroscientific insight that is truly correlated with natural behavior. But not everyone agrees. In February, a group of about two dozen scientists and philosophers gathered in snowy, mountainous Terzolas, Italy, to wrestle with what, exactly, “natural behavior” means. “People don’t really think, ‘Well, what does it mean?’” says Mateusz Kostecki, a doctoral student at Nencki Institute of Experimental Biology in Poland. He helped organize the four-day workshop as “a good occasion to think critically about this trend.” © 2024 Simons Foundation

Keyword: Evolution; Sleep
Link ID: 29205 - Posted: 03.21.2024

By Viviane Callier Biologists have often wondered what would happen if they could rewind the tape of life’s history and let evolution play out all over again. Would lineages of organisms evolve in radically different ways if given that opportunity? Or would they tend to evolve the same kinds of eyes, wings, and other adaptive traits because their previous evolutionary histories had already sent them down certain developmental pathways? A new paper published in Science this February describes a rare and important test case for that question, which is fundamental to understanding how evolution and development interact. A team of researchers at the University of California, Santa Barbara happened upon it while studying the evolution of vision in an obscure group of mollusks called chitons. In that group of animals, the researchers discovered that two types of eyes—eyespots and shell eyes—each evolved twice independently. A given lineage could evolve one type of eye or the other, but never both. Intriguingly, the type of eye that a lineage had was determined by a seemingly unrelated older feature: the number of slits in the chiton’s shell armor. This represents a real-world example of “path-dependent evolution,” in which a lineage’s history irrevocably shapes its future evolutionary trajectory. Critical junctures in a lineage act like one-way doors, opening up some possibilities while closing off other options for good. “This is one of the first cases [where] we’ve actually been able to see path-dependent evolution,” said Rebecca Varney, a postdoctoral fellow in Todd Oakley’s lab at UCSB and the lead author of the new paper. Although path-dependent evolution has been observed in some bacteria grown in labs, “showing that in a natural system was a really exciting thing to be able to do.” © 2024 NautilusNext Inc.,

Keyword: Vision; Evolution
Link ID: 29203 - Posted: 03.21.2024

By Alex Traub Frans de Waal, who used his study of the inner lives of animals to build a powerful case that apes think, feel, strategize, pass down culture and act on moral sentiments — and that humans are not quite as special as many of us like to think — died on Thursday at his home in Stone Mountain, Ga. He was 75. The cause was stomach cancer, his wife, Catherine Marin, said. A psychologist at Emory University in Atlanta and a research scientist at the school’s Yerkes National Primate Research Center, Professor de Waal objected to the common usage of the word “instinct.” He saw the behavior of all sentient creatures, from crows to persons, existing on the same broad continuum of evolutionary adaptation. “Uniquely human emotions don’t exist,” he argued in a 2019 New York Times guest essay. “Like organs, the emotions evolved over millions of years to serve essential functions.” The ambition and clarity of his thought, his skills as a storyteller and his prolific output made him an exceptionally popular figure for a primatologist — or a serious scientist of any kind. Two of his books, “Are We Smart Enough to Know How Smart Animals Are?” (2016) and “Mama’s Last Hug: Animal Emotions and What They Tell Us About Ourselves” (2019), were best sellers. In the mid-1990s, when he was speaker of the House, Newt Gingrich put Professor de Waal’s first book, “Chimpanzee Politics” (1982), on a reading list for Republican House freshmen. The novelists Claire Messud and Sigrid Nunez both told The New York Times that they liked his writing. The actress Isabella Rossellini hosted a talk with him in Brooklyn last year. Major philosophers like Christine Korsgaard and Peter Singer wrote long, considered responses to his ideas. © 2024 The New York Times Company

Keyword: Evolution; Emotions
Link ID: 29200 - Posted: 03.21.2024

By Elise Cutts In March 2019, on a train headed southwest from Munich, the neuroscientist Maximilian Bothe adjusted his careful grip on the cooler in his lap. It didn’t contain his lunch. Inside was tissue from half a dozen rattlesnake spinal cords packed in ice — a special delivery for his new research adviser Boris Chagnaud, a behavioral neuroscientist based on the other side of the Alps. In his lab at the University of Graz in Austria, Chagnaud maintains a menagerie of aquatic animals that move in unusual ways — from piranhas and catfish that drum air bladders to produce sound to mudskippers that hop around on land on two fins. Chagnaud studies and compares these creatures’ neuronal circuits to understand how new ways of moving might evolve, and Bothe was bringing his rattlesnake spines to join the endeavor. The ways that animals move are just about as myriad as the animal kingdom itself. They walk, run, swim, crawl, fly and slither — and within each of those categories lies a tremendous number of subtly different movement types. A seagull and a hummingbird both have wings, but otherwise their flight techniques and abilities are poles apart. Orcas and piranhas both have tails, but they accomplish very different types of swimming. Even a human walking or running is moving their body in fundamentally different ways. The tempo and type of movements a given animal can perform are set by biological hardware: nerves, muscle and bone whose functions are bound by neurological constraints. For example, vertebrates’ walking tempos are set by circuits in their spines that fire without any conscious input from the brain. The pace of that movement is dictated by the properties of the neuronal circuits that control them. For an animal to evolve a novel way of moving, something in its neurological circuitry has to change. Chagnaud wants to describe exactly how that happens. “In evolution, you don’t just invent the wheel. You take pieces that were already there, and you modify them,” he said. “How do you modify those components that are shared across many different species to make new behaviors?” © 2024 Simons Foundation.

Keyword: Evolution
Link ID: 29194 - Posted: 03.16.2024

By Erin Garcia de Jesús A genetic parasite may have robbed humans and other apes of their tails. Around 25 million years ago, this parasite, a small stretch of repetitive DNA called an Alu element, ended up in a gene important for tail development, researchers report in the Feb. 29 Nature. The single insertion altered the gene Tbxt in a way that seems to have sparked one of the defining differences between monkeys and apes: Monkeys have tails, apes don’t. “It was like lightning struck once,” says Jef Boeke, a geneticist at New York University Langone Health, and ape behinds ultimately became bare. The genetic tweak may also give insight into why some babies are born with spinal cord defects such as spina bifida, when the tube that holds the cord doesn’t close all the way (SN: 12/6/16). Alu elements are part of a group of genetic parasites known as transposons or jumping genes that can hop across genetic instruction books, inserting themselves into their hosts’ DNA (SN: 5/16/17). Sometimes, when the gene slips itself into a piece of DNA that is passed down to offspring, these insertions become permanent parts of our genetic code. Transposons, including more than 1 million Alu elements, are found throughout our genome, says geneticist and systems biologist Bo Xia of the Broad Institute in Cambridge, Mass. Researchers once thought of transposons as genetic garbage, but some have central roles in evolution. Without transposons, the placenta, immune system and insulation around nerve fibers may not exist (SN: 2/16/24). And humans might still have tails. To find out how apes lost their tails, Xia, then at NYU Langone Health, Boeke and colleagues analyzed 140 genes involved in vertebrate tail development. © Society for Science & the Public 2000–2024.

Keyword: Evolution; Epigenetics
Link ID: 29170 - Posted: 02.29.2024

By Anthony Ham What is the meaning of a cat’s meow that grows louder and louder? Or your pet’s sudden flip from softly purring as you stroke its back to biting your hand? It turns out these misunderstood moments with your cat may be more common than not. A new study by French researchers, published last month in the journal Applied Animal Behaviour Science, found that people were significantly worse at reading the cues of an unhappy cat (nearly one third got it wrong) than those of a contented cat (closer to 10 percent). The study also suggested that a cat’s meows and other vocalizations are greatly misinterpreted and that people should consider both vocal and visual cues to try to determine what’s going on with their pets. The researchers drew these findings from the answers of 630 online participants; respondents were volunteers recruited through advertisements on social media. Each watched 24 videos of differing cat behaviors. One third depicted only vocal communication, another third just visual cues, and the remainder involved both. “Some studies have focused on how humans understand cat vocalizations,” said Charlotte de Mouzon, lead author of the study and a cat behavior expert at the Université Paris Nanterre. “Other studies studied how people understand cats’ visual cues. But studying both has never before been studied in human-cat communication.” Cats display a wide range of visual signals: tails swishing side to side, or raised high in the air; rubbing and curling around our legs; crouching; flattening ears or widening eyes. Their vocals can range from seductive to threatening: meowing, purring, growling, hissing and caterwauling. At last count, kittens were known to use nine different forms of vocalization, while adult cats uttered 16. That we could better understand what a cat wants by using visual and vocal cues may seem obvious. But we know far less than we think we do. © 2024 The New York Times Compan

Keyword: Animal Communication; Evolution
Link ID: 29169 - Posted: 02.29.2024

By Annie Melchor When the first known flying dinosaurs took to the skies some 150 million years ago, the evolutionary leap relied on adaptations to their nervous system. The changes remained a mystery, though, because of the paucity of fossilized neural tissue. Now fresh clues have emerged from a study that started with the long-gone dinosaurs’ living kin: the common pigeon, Columba livia. Flight taps neural pathways involving the pigeon’s cerebellum, the new works shows, which prompted study investigator Amy Balanoff and her team to look specifically at that structure in digital brain “endocasts,” created by CT scanning fossilized dinosaur skulls. “The birds can help us look for certain things within these extinct animals,” says Balanoff, assistant professor of evolutionary biology at Johns Hopkins University. “Then these extinct animals can tell us about the evolutionary history leading up to living birds.” An analysis of the endocasts — from 10 dinosaur specimens dating to between 90 and 150 million years ago — revealed that the volume of the cerebellum expanded in birds’ closest relatives, but not in more distant ones. And at some point, the cerebellum began folding — instead of growing — to accommodate more neurons within a fixed cranial space, Balanoff says. The results suggest that the cerebellum was “flight-ready before flying,” says Crístian Gutiérrez-Ibáñez, an evolutionary biology research associate at the University of Alberta who was not involved in the study. “So the question is, why did dinosaurs get such a big cerebellum?” © 2024 Simons Foundation

Keyword: Evolution; Movement Disorders
Link ID: 29162 - Posted: 02.25.2024

By Christine Dell'Amore Thunderclouds rolled across Kenya’s Masai Mara savanna as the spotted hyena cubs played, tumbling over each other in the wet grass. The cubs’ mother lounged nearby, rising occasionally to discourage a bigger one-year-old from joining the little play group. When the older animal approached again, one of the pluckier cubs took a cue from its high-ranking mom and stood tall, trying its best to look intimidating. That action seemed comical, but both animals knew their place. The larger, lower ranking hyena stopped short, then bowed its head and slunk off. Photographer Jen Guyton recorded this scene with an infrared camera, allowing an intimate look into hyenas’ nocturnal behaviors. In doing so, she provided a small window into the intriguing structure of hyena society, where all members inherit their place in the pecking order from their mother. Females are in charge, and rank means everything—a matrilineal system that has fueled the spotted hyena’s rise as the most abundant large carnivore in Africa. These and other insights into hyena behavior wouldn’t be possible were it not for 35 years of on-the-ground research by Kay Holekamp, founder of the Mara Hyena Project. Her efforts have helped reveal a creature noted for its advanced society, cognition, and ability to adjust to new surroundings. Holekamp, a biologist at Michigan State University, has been studying the African species in the Masai Mara since 1988—one of the longest running investigations of any mammal ever. “I thought I’d be there for two years,” she says, “but I got hooked.” Hooked on hyenas? Mention their name, and most people grimace. Aristotle described them as “exceedingly fond of putrefied flesh.” Theodore Roosevelt called them a “singular mixture of abject cowardice and the utmost ferocity.” Across Africa, hyenas are seen as evil, greedy, and associated with witchcraft and sexual deviance. Even the 1994 movie The Lion King portrayed them as cunning and malicious. © 1996-2015 National Geographic Society

Keyword: Sexual Behavior; Evolution
Link ID: 29149 - Posted: 02.13.2024

By Shruti Ravindran When preparing to become a butterfly, the Eastern Black Swallowtail caterpillar wraps its bright striped body within a leaf. This leaf is its sanctuary, where it will weave its chrysalis. So when the leaf is disturbed by a would-be predator—a bird or insect—the caterpillar stirs into motion, briefly darting out a pair of fleshy, smelly horns. To humans, these horns might appear yellow—a color known to attract birds and many insects—but from a predator’s-eye-view, they appear a livid, almost neon violet, a color of warning and poison for some birds and insects. “It’s like a jump scare,” says Daniel Hanley, an assistant professor of biology at George Mason University. “Startle them enough, and all you need is a second to get away.” Hanley is part of a team that has developed a new technique to depict on video how the natural world looks to non-human species. The method is meant to capture how animals use color in unique—and often fleeting—behaviors like the caterpillar’s anti-predator display. Most animals, birds, and insects possess their own ways of seeing, shaped by the light receptors in their eyes. Human retinas, for example, are sensitive to three wavelengths of light—blue, green, and red—which enables us to see approximately 1 million different hues in our environment. By contrast, many mammals, including dogs, cats, and cows, sense only two wavelengths. But birds, fish, amphibians, and some insects and reptiles typically can sense four—including ultraviolet light. Their worlds are drenched in a kaleidoscope of color—they can often see 100 times as many shades as humans do. Hanley’s team, which includes not just biologists but multiple mathematicians, a physicist, an engineer, and a filmmaker, claims that their method can translate the colors and gradations of light perceived by hundreds of animals to a range of frequencies that human eyes can comprehend with an accuracy of roughly 90 percent. That is, they can simulate the way a scene in a natural environment might look to a particular species of animal, what shifting shapes and objects might stand out most. The team uses commercially available cameras to record video in four color channels—blue, green, red, and ultraviolet—and then applies open source software to translate the picture according to the mix of light receptor sensitivities a given animal may have. © 2024 NautilusNext Inc.,

Keyword: Vision; Evolution
Link ID: 29133 - Posted: 02.06.2024

By Erin Garcia de Jesús Bruce the kea is missing his upper beak, giving the olive green parrot a look of perpetual surprise. But scientists are the astonished ones. The typical kea (Nestor notabilis) sports a long, sharp beak, perfect for digging insects out of rotten logs or ripping roots from the ground in New Zealand’s alpine forests. Bruce has been missing the upper part of his beak since at least 2012, when he was rescued as a fledgling and sent to live at the Willowbank Wildlife Reserve in Christchurch. The defect prevents Bruce from foraging on his own. Keeping his feathers clean should also be an impossible task. In 2021, when comparative psychologist Amalia Bastos arrived at the reserve with colleagues to study keas, the zookeepers reported something odd: Bruce had seemingly figured out how to use small stones to preen. “We were like, ‘Well that’s weird,’ ” says Bastos, of Johns Hopkins University. Over nine days, the team kept a close eye on Bruce, quickly taking videos if he started cleaning his feathers. Bruce, it turned out, had indeed invented his own work-around to preen, the researchers reported in 2021 in Scientific Reports. First, Bruce selects the proper tool, rolling pebbles around in his mouth with his tongue and spitting out candidates until he finds one that he likes, usually something pointy. Next, he holds the pebble between his tongue and lower beak. Then, he picks through his feathers. “It’s crazy because the behavior was not there from the wild,” Bastos says. When Bruce arrived at Willowbank, he was too young to have learned how to preen. And no other bird in the aviary uses pebbles in this way. “It seems like he just innovated this tool use for himself,” she says. © Society for Science & the Public 2000–2024.

Keyword: Intelligence; Evolution
Link ID: 29117 - Posted: 01.27.2024

By Kenna Hughes-Castleberry Crows, ravens and other birds in the Corvidae family have a head for numbers. Not only can they make quantity estimations (as can many other animal species), but they can learn to associate number values with abstract symbols, such as “3.” The biological basis of this latter talent stems from specific number-associated neurons in a brain region called the nidopallium caudolaterale (NCL), a new study shows. The region also supports long-term memory, goal-oriented thinking and number processing. Discovery of the specialized neurons in the NCL “helps us understand the origins of our counting and math capabilities,” says study investigator Andreas Nieder, professor of animal physiology at the University of Tübingen. Until now, number-associated neurons — cells that fire especially frequently in response to an animal seeing a specific number — had been found only in the prefrontal cortex of primates, which shared a common ancestor with corvids some 300 million years ago. The new findings imply that the ability to form number-sign associations evolved independently and convergently in the two lineages. “Studying whether animals have similar concepts or represent numerosity in ways that are similar to what humans do helps us establish when in our evolutionary history these abilities may have emerged and whether these abilities emerge only in species with particular ecologies or social structures,” says Jennifer Vonk, professor of psychology at Oakland University, who was not involved in the new study. Corvids are considered especially intelligent birds, with previous studies showing that they can create and use tools, and may even experience self-recognition. Nieder has studied corvids’ and other animals’ “number sense,” or the ability to understand numerical values, for more than a decade. His previous work revealed specialized neurons in the NCL that recognize and respond to different quantities of items — including the number zero. But he tested the neurons only with simple pictures and signs that have inherent meaning for the crows, such as size. © 2023 Simons Foundation.

Keyword: Intelligence; Evolution
Link ID: 29111 - Posted: 01.23.2024

Nicola Davis Science correspondent Breaking up is hard to do, but it seems the brain may have a mechanism to help get over an ex. Researchers studying prairie voles say the rodents, which form monogamous relationships, experience a burst of the pleasure hormone dopamine in their brain when seeking and reuniting with their partner. However, after being separated for a lengthy period, they no longer experience such a surge. “We tend to think of it as ‘getting over a breakup’ because these voles can actually form a new bond after this change in dopamine dynamics – something they can’t do while the bond is still intact,” said Dr Zoe Donaldson, a behavioural neuroscientist at CU Boulder and senior author of the work. Writing in the journal Current Biology, the team describe how they carried out a series of experiments in which voles had to press levers to access either their mate or an unknown vole located on the other side of a see-through door. The team found the voles had a greater release of dopamine in their brain when pressing levers and opening doors to meet their mate than when meeting the novel vole. They also huddled more with their mate on meeting, and experienced a greater rise in dopamine while doing so. Donaldson said: “We think the difference is tied to knowing you are about to reunite with a partner and reflects that it is more rewarding to reunite with a partner than go hang out with a vole they don’t know.” However, these differences in dopamine levels were no longer present after they separated pairs of voles for four weeks – a considerable period in the lifetime of the rodents. Differences in huddling behaviour also decreased. The researchers say the findings suggest a devaluation of the bond between pairs of voles, rather than that they have forgotten each other. © 2024 Guardian News & Media Limited

Keyword: Sexual Behavior; Evolution
Link ID: 29104 - Posted: 01.18.2024

By Jude Coleman When it comes to tail wagging among dogs, some questions still hound researchers. We know that domesticated dogs (Canis familiaris) use their tails to communicate — with other dogs as well as humans — and even what various types of wags mean, researchers note in a new review of the scientific literature. But we don’t know why dogs seem to wag more than other canines or even how much of it is under their control, ethologist Silvia Leonetti and colleagues report January 17 in Biology Letters. “Among all possible animal behavior that humans experience in everyday life, domestic dog tail wagging is one of the most common,” says Leonetti, who is now at the University of Turin in Italy. “But a lot of dog behavior remains a scientific enigma.” So Leonetti and her colleagues pored through previous studies to figure out what elements of tail wagging are understood and which remain mysterious. They also hypothesized about the behavior’s origins: Perhaps tail wagging placates some human need for rhythm, the researchers suggest, or maybe the behavior is a genetic tagalong, a trait tied to others that humans bred into domesticated dogs. “People think wagging tail equals happy dog. But it’s actually a lot more complicated than that,” says Emily Bray, an expert in canine cognition at the University of Arizona in Tucson who was not involved with the work. Understanding why dogs wag their tails is important partly from an animal welfare perspective, she says, as it could help dog owners read their pups’ cues better. One main thing that researchers know about tail wagging is that it’s used predominantly for communication instead of locomotion, like a whale, or swatting away bugs, like a horse. Wagging also means different things depending on how the tail is wagged, such as its height or side-to-side movement. © Society for Science & the Public 2000–2024.

Keyword: Animal Communication; Emotions
Link ID: 29103 - Posted: 01.18.2024

Diana Fleischman Because of the flaming culture wars, feminists and others who disagree about the nature of sex or sex differences often ascribe significant harms to researchers who claim that sex is binary or who acknowledge biological sex differences. These perceived harms include oppression, inequality, and even murder and suicide. As a result, many influential voices in the sex difference debate rarely engage in dialogue. This context made “The Big Conversation”—an October conference that brought together a diverse group of feminists, evolutionary psychologists, biologists, and neuroscientists—such a remarkable event. The rarity of such a meeting was highlighted by the cancellation of a panel on sex differences at an annual anthropological conference just a few days before. People who had sniped at each other for years through academic papers and social media not only shared stages and panels, they broke bread together. Attendees on all sides of the issue held my baby, whom I brought along. The fear of meeting ideological opponents often leads to the expectation of hostility in person, but what’s worse is that you often will come to like them! The Big Conversation took years to come together. It was organized by sex difference expert Marco Del Giudice and Paul Golding of the Santa Fe Boys Foundation. This foundation is dedicated to exploring how to help boys and young men and was the event’s sponsor. The conference featured 16 talks and 5 discussion sections. The entire conference is available for viewing (for free!) on the Santa Fe Boys Foundation website. A central questions in sex difference research concerns the origins of differences between men and women. Are these differences primarily the result of socialization, culture, and stereotype effects, or are these differences largely innate or biological? We can call these perspectives, as Carole Hooven did during her talk, the strong socialization view and the strong biology view, respectively. Many of the conference attendees, like Gina Rippon, Cordelia Fine and Daphna Joel, endorse the strong socialization view of sex differences, arguing that men and women are innately psychologically similar but are driven into different roles by cultural forces and socialization. This perspective sparks controversy surrounding discussions on biological sex differences because its proponents argue that legitimizing and publicizing sex differences creates them where they did not exist before. © 2024 Colin Wright

Keyword: Sexual Behavior; Evolution
Link ID: 29095 - Posted: 01.13.2024