Links for Keyword: Aggression

Follow us on Facebook and Twitter, or subscribe to our mailing list, to receive news updates. Learn more.


Links 1 - 20 of 335

April Fulton In the wake of the massacre at a small-town Texas church on Sunday, many people are asking why. A large portion of the mass shootings in the U.S. in recent years have roots in domestic violence against partners and family members. Depending on how you count, it could be upwards of 50 percent. We know the Texas gunman, Devin Patrick Kelley, was court-martialed for assaulting his wife and their young child in 2012, although this information apparently was not included in the formal government database that tracks such things. There are laws on the books preventing convicted domestic violence offenders from obtaining weapons. So why does this keep happening? There are no easy answers. NPR's Alison Kodjak recently talked with Daniel Webster, director of the Johns Hopkins Center for Gun Policy and Research in Baltimore, Md., about the complexities of gun violence, mass shootings, and the difficulty we have in understanding the people who commit these crimes. While perpetrators of domestic violence account for only about 10 percent of all gun violence, they accounted for 54 percent of mass shootings between 2009 and 2016, according to the advocacy group Everytown for Gun Safety, so there is a disproportionate link, Webster tells Kodjak. "Generally, it fits a pattern of easy access to firearms of individuals who have very controlling kind of relationships with their intimate partners and are greatly threatened when their control is challenged," he says. © 2017 npr

Related chapters from BN8e: Chapter 15: Emotions, Aggression, and Stress
Related chapters from MM:Chapter 11: Emotions, Aggression, and Stress
Link ID: 24303 - Posted: 11.08.2017

Susan Milius Kleptopredation klep-toe-preh-day-shun n. A food-gathering strategy of eating an organism and the meal it just ate. A wily sea slug has a way to get two meals in one: It gobbles up smaller predators that have recently gulped in their own prey. “Kleptopredation” is the term Trevor Willis of the University of Portsmouth in England and his colleagues propose for this kind of food theft by well-timed predation. Researchers knew that the small Mediterranean nudibranch Cratena peregrina, with a colorful mane of streamers rippling off its body, climbs and preys on pipe cleaner‒skinny, branched colonies of Eudendrium racemosum hydroids, which are distant relatives of corals. The nudibranchs devour the individual hydroid polyps and, new tests show, prefer them well fed. In experimental buffets with fed or hungry polyps, the nudibranchs ate faster when polyps were fat with just-caught plankton. In this way, at least half of a nudibranch’s diet is plankton. This quirk explains why some biochemical signatures that distinguish predators from prey don’t work out clearly for nudibranchs and hydroids, the researchers report November 1 in Biology Letters. A weird echo of this meal-stealing strategy shows up in certain jumping spiders. The arachnids don’t have the biology to drink vertebrate blood themselves. Instead, they catch a lot of female mosquitoes that have just tanked up (SN: 10/15/05, p. 246). |© Society for Science & the Public 2000 - 2017. All rights reserved.

Related chapters from BN8e: Chapter 13: Homeostasis: Active Regulation of the Internal Environment; Chapter 15: Emotions, Aggression, and Stress
Related chapters from MM:Chapter 9: Homeostasis: Active Regulation of the Internal Environment; Chapter 11: Emotions, Aggression, and Stress
Link ID: 24271 - Posted: 11.01.2017

By Michael Price Good luck finding a legislative issue more controversial than gun violence—at least in the United States. Compounding the controversy is a dearth of reliable data, thanks largely to a de facto ban on federally funded firearms research enacted in 1996. Yet a new study funded by Harvard Business School suggests that one policy—a mandatory waiting period between the sale of a gun and its delivery—could save hundreds of U.S. lives each year if implemented nationally. “Absolutely, this study demonstrates a robust association between waiting periods and gun deaths,” says Margaret Formica, a public health researcher at the State University of New York Upstate Medical University in Syracuse who studies firearms deaths but wasn’t involved in the new work. “It’s an innovative way of looking at this issue.” More than 33,000 Americans die each year in gun-related incidents, including accidents, homicides, and suicides, about as many as in vehicle accidents. But regulations that place limits on the sale and ownership of firearms vary widely from state to state, and it’s unclear which measures might actually prevent gun violence. Some research from other countries has suggested that a “cooling off” period between the sale and delivery of a gun can tamp down suicidal impulses and anger-driven violence. So when Harvard University researchers were motivated to contribute to policy-relevant gun research in the wake of the 2012 Sandy Hook Elementary School shooting, such “waiting periods” were an easy jumping-off point. Not only was there past research, but data on waiting-period laws are relatively easy to track down. “Instead of saying, ‘Isn’t it a tragedy, children are dying, oh well, on to the next meeting,’ we decided we wanted to do something,” says Deepak Malhotra, a negotiation and conflict resolution researcher who co-authored the new study with economist Michael Luca. © 2017 American Association for the Advancement of Science

Related chapters from BN8e: Chapter 15: Emotions, Aggression, and Stress
Related chapters from MM:Chapter 11: Emotions, Aggression, and Stress
Link ID: 24205 - Posted: 10.17.2017

By Jessica Hamzelou A rare sighting of a chimpanzee giving birth in the wild came to a grisly conclusion. Within seconds of the birth, the baby was snatched away and eaten by a male of the same group. The observation explains why female chimpanzees tend to go into hiding for weeks or months when they have their babies. Little is known about how chimpanzees give birth in the wild because only five births have ever been observed, says Hitonaru Nishie of Kyoto University in Japan. Nishie and his colleagues have been studying chimpanzees in Tanzania’s Mahale mountains for the last few years. One of the reasons so few have been witnessed is that the soon-to-be mothers often leave the group when the baby is due, and don’t return until the infant is weeks or months old. This absence has been described as a chimpanzee’s “maternity leave”. So Nishie and his colleague Michio Nakamura were surprised when, at around 11 am one December day, a female member of the chimpanzee group they were observing began to give birth in front of the 20 other members. As soon as the baby was out – and before the mother had even had a chance to touch it – the baby was snatched away by a male member of the group, who then disappeared into the bush. The researchers found him around 1½ hours later, sitting up a tree and eating the infant from the lower half of its body. He ate the entire body within an hour. © Copyright New Scientist Ltd.

Related chapters from BN8e: Chapter 15: Emotions, Aggression, and Stress
Related chapters from MM:Chapter 11: Emotions, Aggression, and Stress
Link ID: 24193 - Posted: 10.14.2017

By John Horgan “The Forgotten Era of Brain Chips,” published in Scientific American in October 2005, has provoked as much interest as anything I’ve ever written. It focuses on Jose Manuel Rodriguez Delgado, a pioneer in brain-stimulation research. I keep hearing from journalists and others wanting more information on Delgado, whom I interviewed in 2005 and who died in 2011. Delgado fascinates conspiracy theorists, too. An article on Infowars.com describes him as a “madman” who believed that “no human being has an inherent right to his own personality.” Given widespread interest in and misinformation about Delgado, whose work prefigures current research on brain implants (see “Further Reading”), I’m posting an edited version of my 2005 article. --John Horgan Once among the world’s most acclaimed scientists, Jose Manuel Rodriguez Delgado has become an urban legend, whose career is shrouded in misinformation. Delgado pioneered that most unnerving of technologies, the brain chip, which manipulates the mind by electrically stimulating neural tissue with implanted electrodes. Long a McGuffin of science fictions, from The Terminal Man to The Matrix, brain chips are now being tested as treatments for epilepsy, Parkinson’s disease, paralysis, depression, and other disorders. In part because it was relatively unencumbered by ethical regulations, Delgado’s research rivaled and even surpassed much of what is being done today. In 1965, The New York Times reported on its front page that he had stopped a charging bull in its tracks by sending a radio signal to a device implanted in its brain. He also implanted radio-equipped electrode arrays, which he called “stimoceivers,” in dogs, cats, monkeys, chimpanzees, gibbons, and humans. With the push of a button, he could evoke smiles, snarls, bliss, terror, hunger, garrulousness, lust, and other responses. © 2017 Scientific American,

Related chapters from BN8e: Chapter 15: Emotions, Aggression, and Stress; Chapter 3: Neurophysiology: The Generation, Transmission, and Integration of Neural Signals
Related chapters from MM:Chapter 11: Emotions, Aggression, and Stress; Chapter 3: Neurophysiology: The Generation, Transmission, and Integration of Neural Signals
Link ID: 24131 - Posted: 10.02.2017

By Avi Selk Five minutes in the life of a guppy in the terrible spring of 2015: You’re swimming around with your friends in a tank. You’ve been here for days. Food falls from the sky. Everything is fine. Then suddenly, you’re netted up and dropped into an alien world, all alone, just you and the glass. You panic at first, but in time your courage returns and you investigate. Glass wall; glass wall; glass wall; glass wall. A scrap of plastic on the aquarium floor provides the only scant shelter. Hmm … Splash! A huge beak crashes into the water. If you knew what the University of Exeter is, you might wonder how a heron even got inside. Instead, you just cower under the plastic and wait for death. But the beak does not return, and you peek out after a minute or so, and soon the net delivers you back to familiar surroundings. Food and friends again. The terrible memory fades, and life returns to normal. For three days. Then the net again, and the same strange tank of terror. Again and again and again — for you are a guppy in Tom Houslay’s lab, and he wants to understand the very core of your being. The fish could have been any one of the 105 Trinidadian guppies that Houslay’s team at Exeter’s Penryn campus subjected to regular doses of fear two years ago, in an effort to determine whether they have personalities. It turns out they do, of a sort. According to the team’s study, published Monday in the journal Functional Ecology, each fish demonstrated a unique response to stress — which they endured every three days in the form of a pulley-rigged lawn-ornament heron named “Grim,” or a predatory cichlid suddenly revealed on the other side of the glass. “Some of them go straight to the shelter,” said Houslay, an evolutionary biologist and the study’s lead author. “Some just stop moving, maybe hoping they won’t be seen. Some rush to the side and just swim up and down trying to escape.” © 1996-2017 The Washington Post

Related chapters from BN8e: Chapter 15: Emotions, Aggression, and Stress
Related chapters from MM:Chapter 11: Emotions, Aggression, and Stress
Link ID: 24118 - Posted: 09.28.2017

By NATALIE ANGIER Tom Vaughan, a photographer then living in Colorado’s Mancos Valley, kept a hummingbird feeder outside his house. One morning, he stepped through the portico door and noticed a black-chinned hummingbird dangling from the side of the red plastic feeder like a stray Christmas ornament. At first, Mr. Vaughan thought he knew what was going on. “I’d previously seen a hummingbird in a state of torpor,” he said, “when it was hanging straight down by its feet, regenerating its batteries, before dropping down and flying off.” On closer inspection, Mr. Vaughan saw that the hummingbird was hanging not by its feet but by its head. And forget about jumping its batteries: the bird was in the grip of a three-inch-long green praying mantis. The mantis was clinging with its back legs to the rim of the feeder, holding its feathered catch in its powerful, seemingly reverent front legs, and methodically chewing through the hummingbird’s skull to get at the nutritious brain tissue within. “It was staring at me as it fed,” Mr. Vaughan said. “Of course, I took a picture of it.” Startled by the clicking shutter, the mantis dropped its partially decapitated meal, crawled under the feeder — and began menacing two hummingbirds on the other side. “Talk about cognitive dissonance,” Mr. Vaughan said. “I always thought of mantises as wonderful things to have in your garden to get rid of bugs, but it turns out they sometimes go for larger prey, too.” “It gave me new respect for mantises,” he added. © 2017 The New York Times Company

Related chapters from BN8e: Chapter 15: Emotions, Aggression, and Stress
Related chapters from MM:Chapter 11: Emotions, Aggression, and Stress
Link ID: 24101 - Posted: 09.23.2017

By Jessica Hamzelou Aggression and sexual behaviour are controlled by the same brain cells in male mice – but not in females. The finding suggests that males are more likely to become aggressive when they see a potential mate than females. The brain regions that contain these cells look similar in mice and humans, say the researchers behind the study, but they don’t yet know if their finding has relevance to human behaviour. Similar to humans, male mice are, on the whole, more aggressive than females. Because of this, most research into aggression has overlooked females, says Dayu Lin at New York University. “I would say 90 per cent of aggression studies have been done in males,” she says. “We know very little about aggression in females.” But females can be aggressive too. For instance, female mice can be aggressive when protecting their newborn pups. In 2011, Lin and her colleagues studied a region of the brain called the hypothalamus, responsible for regulating many different behaviours. They discovered a set of cells within this region in male mice that controlled both aggressive and sexual behaviours. When the cells were shut off, the mice didn’t mate or show aggression, but both behaviours could be triggered when the cells were stimulated. © Copyright New Scientist Ltd.

Related chapters from BN8e: Chapter 15: Emotions, Aggression, and Stress; Chapter 12: Sex: Evolutionary, Hormonal, and Neural Bases
Related chapters from MM:Chapter 11: Emotions, Aggression, and Stress; Chapter 8: Hormones and Sex
Link ID: 24076 - Posted: 09.19.2017

Mariah Quintanilla Kenneth Catania knows just how much it hurts to be zapped by an electric eel. For the first time, the biologist at Vanderbilt University in Nashville has measured the strength of a defensive electrical attack on a real-life potential predator — himself. Catania placed his arm in a tank with a 40-centimeter-long electric eel (relatively small as eels go) and determined, in amperes, the electrical current that flowed into him when the eel struck. At its peak, the current reached 40 to 50 milliamperes in his arm, he reports online September 14 in Current Biology. This zap was painful enough to cause him to jerk his hand from the tank during each trial. “If you’ve ever been on a farm and touched an electric fence, it’s pretty similar to that,” he says. This is Catania’s latest study in a body of research analyzing the intricacies of an electric eel’s behavior. The way electric eels have been described by biologists in the past has been fairly primitive, says Jason Gallant, a biologist who heads the Michigan State University Electric Fish Lab in East Lansing who was not involved in the study. Catania’s work reveals that “what the electric eel is doing is taking the electric ability that it has and using that to its absolute advantage in a very sophisticated, deliberate way,” he says. Electric eels use electric current to navigate, communicate and hunt for small prey. But when faced with a large land-based predator, eels will launch themselves from the water and electrify the animal with a touch of the head. |© Society for Science & the Public 2000 - 2017.

Related chapters from BN8e: Chapter 3: Neurophysiology: The Generation, Transmission, and Integration of Neural Signals; Chapter 8: General Principles of Sensory Processing, Touch, and Pain
Related chapters from MM:Chapter 3: Neurophysiology: The Generation, Transmission, and Integration of Neural Signals; Chapter 5: The Sensorimotor System
Link ID: 24068 - Posted: 09.15.2017

James Gorman African wild dogs sneeze. And that’s a first. No other social animal has been reported to cast a vote, of sorts, by sneezing, although in humans sneezing may once have expressed a negative opinion, as in, “nothing to sneeze at.” Wild dog sneezing is different. For one thing it seems to indicate a positive reaction to a proposal before a group of dogs. When a pack of these dogs is getting ready to hunt, scientists reported Tuesday, the more sneezes, the more likely they are to actually get moving. Just about all social organisms make group decisions that require reaching a consensus. If monkeys or meerkats are looking for a better place to forage, they need to reach a consensus about moving on among a minimum number of animals — called a quorum, just like in Congress. Even some bacteria do this before releasing toxins or lighting up with bioluminescence. Bacteria use chemical signals but larger animals often use sounds as a way of saying, I’m in. However, among grunts, huffs, piping signals and others, the sneeze had not been reported as one of those signals until a group of American, British and Australian researchers published their observations of African dogs in the Proceedings of the Royal Society B. They were studying the dogs where they live in Botswana to see how they decide to go on a hunt. Like most carnivores, the wild dogs sleep a lot. But at some point one of the pack will start what is called a rally, getting all the other members excited and milling around as if they want to play. Sometimes the rallies are successful, and off the pack goes. Sometimes the pack members lie down and go back to sleep. Neil R. Jordan of the University of New South Wales in Sydney, the senior author of the report, noticed that the successful rallies there seemed to have more sneezing. © 2017 The New York Times Company

Related chapters from BN8e: Chapter 15: Emotions, Aggression, and Stress
Related chapters from MM:Chapter 11: Emotions, Aggression, and Stress
Link ID: 24045 - Posted: 09.07.2017

By Aylin Woodward If you’re trying to overthrow the boss, you might need a friend to back you up. The same is true for female macaques, who need allies to resist authority and take down more powerful members of the group. Most primates have social hierarchies in which some individuals are dominant over the others. For rhesus macaques, these strict hierarchies are organised around female relationships. Lower-ranked females have little social mobility and must silently bare their teeth to higher-ranked females. The signal means “I want you to know that I know that you out-rank me” and is important in communicating social rank, says Darcy Hannibal at the University of California, Davis. “They are ‘bending the knee’.” But Hannibal and her colleagues have discovered that subordinate females can override the status quo. To do this, female macaques form alliances with family, friends or both. These alliances help females maintain or increase their social rank and compete for resources. A female who wants to challenge those higher up needs this help, says Hannibal. Insubordination events were more likely if the lower-ranked female was older. They were most likely if the subordinate outweighed the dominant female by 7 kilograms and the dominant female had no family allies. The more allies the subordinate female had, and the more days her mother was present in the group, the more often she would exhibit insubordinate behaviour. © Copyright New Scientist Ltd.

Related chapters from BN8e: Chapter 15: Emotions, Aggression, and Stress; Chapter 12: Sex: Evolutionary, Hormonal, and Neural Bases
Related chapters from MM:Chapter 11: Emotions, Aggression, and Stress; Chapter 8: Hormones and Sex
Link ID: 24005 - Posted: 08.28.2017

Phil Daoust As a man – the sort of thoughtful, Fawcett Society-supporting man who lowers the toilet seat after peeing, even when he has the house to himself – it’s hard to talk about women and their hormones. There’s no doubt that they affect minds and bodies, through puberty, pregnancy and premenstrual syndrome (PMS). The National Association for Premenstrual Syndrome’s list of “common” symptoms includes mood swings, depression, tiredness, anxiety, feeling out of control, irritability, aggression, headaches, sleep disorder, food cravings, breast tenderness, bloating, weight gain and clumsiness. Men can’t and shouldn’t ignore this catalogue of woes. But there’s a fine line between commiserating and condescending. It’s too easy – and tempting – to dismiss a woman’s actions or opinions because it’s “that time of the month”. Mostly it isn’t. Many women are lucky enough to escape PMS. And even when they don’t, sometimes she’s still right and you’re still wrong. For better or worse, however, we males must now face up to our own fluctuating chemistry. We may not routinely bloat and bleed, but a new study makes it clear that we too are at the mercy of our hormones – specifically, the one produced between our legs. After testing hundreds of men, researchers from the California Institute of Technology, Wharton School, Western University and ZRT Laboratory reported (pdf) “a clear and robust causal effect of testosterone on human cognition and decision-making” © 2017 Guardian News and Media Limited

Related chapters from BN8e: Chapter 15: Emotions, Aggression, and Stress; Chapter 5: Hormones and the Brain
Related chapters from MM:Chapter 11: Emotions, Aggression, and Stress; Chapter 8: Hormones and Sex
Link ID: 23993 - Posted: 08.25.2017

By M. GREGG BLOCHE Was the Central Intelligence Agency’s post-9/11 “enhanced interrogation” program an instance of human experimentation? Recently declassified documents raise this explosive question. The documents were obtained by the American Civil Liberties Union in connection with a federal lawsuit scheduled for trial next month. The case was brought on behalf of three former detainees against two psychologists who developed the C.I.A.’s program. I reviewed some of the documents in a recent article in The Texas Law Review. Internal C.I.A. records indicate that the psychologists, James Mitchell and John Bruce Jessen, anticipated objections that critics would later level against the program, such as that coercion might generate unreliable information, and contracted with the agency to design research tools that addressed some of these concerns. Redactions in the released documents (and the C.I.A.’s withholding of others) make it impossible to know the full extent, if any, of the agency’s data collection efforts or the findings they yielded. At their depositions for the A.C.L.U. lawsuit, each of the psychologists denied having evaluated the program’s effectiveness. But the C.I.A. paid the psychologists to develop a research methodology and instructed physicians and other medical staff members at clandestine detention sites to monitor and chart the health conditions of detainees. In response, the advocacy group Physicians for Human Rights has charged that the program was an unlawful experiment on human beings. It calls the program “one of the gravest breaches of medical ethics by United States health professionals since the Nuremberg Code,” the ethical principles written to protect people from human experimentation after World War II. In its lawsuit, the A.C.L.U. is pressing a similar claim. © 2017 The New York Times Company

Related chapters from BN8e: Chapter 15: Emotions, Aggression, and Stress; Chapter 1: Biological Psychology: Scope and Outlook
Related chapters from MM:Chapter 11: Emotions, Aggression, and Stress; Chapter 1: An Introduction to Brain and Behavior
Link ID: 23956 - Posted: 08.14.2017

Ashley Yeager DNA might reveal how dogs became man’s best friend. A new study shows that some of the same genes linked to the behavior of extremely social people can also make dogs friendlier. The result, published July 19 in Science Advances, suggests that dogs’ domestication may be the result of just a few genetic changes rather than hundreds or thousands of them. “It is great to see initial genetic evidence supporting the self-domestication hypothesis or ‘survival of the friendliest,’” says evolutionary anthropologist Brian Hare of Duke University, who studies how dogs think and learn. “This is another piece of the puzzle suggesting that humans did not create dogs intentionally, but instead wolves that were friendliest toward humans were at an evolutionary advantage as our two species began to interact.” Not much is known about the underlying genetics of how dogs became domesticated. In 2010, evolutionary geneticist Bridgett vonHoldt of Princeton University and colleagues published a study comparing dogs’ and wolves’ DNA. The biggest genetic differences gave clues to why dogs and wolves don’t look the same. But major differences were also found in WBSCR17, a gene linked to Williams-Beuren syndrome in humans. Williams-Beuren syndrome leads to delayed development, impaired thinking ability and hypersociability. VonHoldt and colleagues wondered if changes to the same gene in dogs would make the animals more social than wolves, and whether that might have influenced dogs’ domestication. © Society for Science & the Public 2000 - 2017.

Related chapters from BN8e: Chapter 15: Emotions, Aggression, and Stress; Chapter 6: Evolution of the Brain and Behavior
Related chapters from MM:Chapter 11: Emotions, Aggression, and Stress
Link ID: 23855 - Posted: 07.20.2017

By LISA FELDMAN BARRETT Imagine that a bully threatens to punch you in the face. A week later, he walks up to you and breaks your nose with his fist. Which is more harmful: the punch or the threat? The answer might seem obvious: Physical violence is physically damaging; verbal statements aren’t. “Sticks and stones can break my bones, but words will never hurt me.” But scientifically speaking, it’s not that simple. Words can have a powerful effect on your nervous system. Certain types of adversity, even those involving no physical contact, can make you sick, alter your brain — even kill neurons — and shorten your life. Your body’s immune system includes little proteins called proinflammatory cytokines that cause inflammation when you’re physically injured. Under certain conditions, however, these cytokines themselves can cause physical illness. What are those conditions? One of them is chronic stress. Your body also contains little packets of genetic material that sit on the ends of your chromosomes. They’re called telomeres. Each time your cells divide, their telomeres get a little shorter, and when they become too short, you die. This is normal aging. But guess what else shrinks your telomeres? Chronic stress. If words can cause stress, and if prolonged stress can cause physical harm, then it seems that speech — at least certain types of speech — can be a form of violence. But which types? This question has taken on some urgency in the past few years, as professed defenders of social justice have clashed with professed defenders of free speech on college campuses. Student advocates have protested vigorously, even violently, against invited speakers whose views they consider not just offensive but harmful — hence the desire to silence, not debate, the speaker. “Trigger warnings” are based on a similar principle: that discussions of certain topics will trigger, or reproduce, past trauma — as opposed to merely challenging or discomfiting the student. The same goes for “microaggressions.” © 2017 The New York Times Company

Related chapters from BN8e: Chapter 15: Emotions, Aggression, and Stress
Related chapters from MM:Chapter 11: Emotions, Aggression, and Stress
Link ID: 23846 - Posted: 07.18.2017

Hannah Devlin Science correspondent Brash, brawny and keen to impose their will on anyone who enters their sphere of existence: the alpha male in action is unmistakable. Now scientists claim to have pinpointed the biological root of domineering behaviour. New research has located a brain circuit that, when activated in mice, transformed timid individuals into bold alpha mice that almost always prevailed in aggressive social encounters. In some cases, the social ranking of the subordinate mice soared after the scientists’ intervention, hinting that it might be possible to acquire “alphaness” simply by adopting the appropriate mental attitude. Or as Donald Trump might put it: “My whole life is about winning. I almost never lose.” Prof Hailan Hu, a neuroscientist at Zhejiang University in Hangzhou, China, who led the work said: “We stimulate this brain region and we can make lower ranked mice move up the social ladder.” The brain region, called the dorsal medial prefrontal cortex (dmPFC), was already known to light up during social interactions involving decisions about whether to be assertive or submissive with others. But brain imaging alone could not determine whether the circuit was ultimately controlling how people behave. The latest findings answer the question, showing that when the circuit was artificially switched on, low-ranking mice were immediately emboldened. “It’s not aggressiveness per se,” Hu said. “It increases their perseverance, motivational drive, grit.” © 2017 Guardian News and Media Limited

Related chapters from BN8e: Chapter 15: Emotions, Aggression, and Stress; Chapter 12: Sex: Evolutionary, Hormonal, and Neural Bases
Related chapters from MM:Chapter 11: Emotions, Aggression, and Stress; Chapter 8: Hormones and Sex
Link ID: 23836 - Posted: 07.14.2017

/ By Rod McCullom Facebook has problem — a very significant problem — with the violent and gruesome content which has quickly found its way, in numerous instances, onto the social network and its Facebook Live feature, which was introduced to American users in January 2016. The disturbing litany of murders, suicides and assaults have already become macabre technological milestones. These include Robert Godwin Sr., the 74-year-old father of nine and grandfather of 14 who was selected by a gunman at random and then murdered in a video posted to Facebook in mid-April. One week later, a man in Thailand streamed the murder of his 11-month old daughter on Facebook Live before taking his own life. The beating and torture of an 18-year-old man with intellectual and development disabilities was live-streamed on the service in January, and the tragic shooting death of two-year-old Lavontay White Jr. followed a month later on Valentine’s Day. “At least 45 instances of violence — shootings, rapes, murders, child abuse, torture, suicides, and attempted suicides — have been broadcast via Live [since] December 2015,” Buzzfeed’s Alex Kantrowitz reported this month. “That’s an average rate of about two instances per month.” Copyright 2017 Undark

Related chapters from BN8e: Chapter 15: Emotions, Aggression, and Stress; Chapter 17: Learning and Memory
Related chapters from MM:Chapter 11: Emotions, Aggression, and Stress; Chapter 13: Memory, Learning, and Development
Link ID: 23778 - Posted: 06.27.2017

Judith Ohikuare In 2005, James Fallon's life started to resemble the plot of a well-honed joke or big-screen thriller: A neuroscientist is working in his laboratory one day when he thinks he has stumbled upon a big mistake. He is researching Alzheimer's and using his healthy family members' brain scans as a control, while simultaneously reviewing the fMRIs of murderous psychopaths for a side project. It appears, though, that one of the killers' scans has been shuffled into the wrong batch. The scans are anonymously labeled, so the researcher has a technician break the code to identify the individual in his family, and place his or her scan in its proper place. When he sees the results, however, Fallon immediately orders the technician to double check the code. But no mistake has been made: The brain scan that mirrors those of the psychopaths is his own. After discovering that he had the brain of a psychopath, Fallon delved into his family tree and spoke with experts, colleagues, relatives, and friends to see if his behavior matched up with the imaging in front of him. He not only learned that few people were surprised at the outcome, but that the boundary separating him from dangerous criminals was less determinate than he presumed. Fallon wrote about his research and findings in the book The Psychopath Inside: A Neuroscientist's Personal Journey Into the Dark Side of the Brain, and we spoke about the idea of nature versus nurture, and what—if anything—can be done for people whose biology might betray their behavior. © 2017 by The Atlantic Monthly Group.

Related chapters from BN8e: Chapter 15: Emotions, Aggression, and Stress
Related chapters from MM:Chapter 11: Emotions, Aggression, and Stress
Link ID: 23707 - Posted: 06.05.2017

By Elizabeth Pennisi When, 6 years ago, divers captured on video a cuckolding attempt among squidlike animals called cuttlefish, experts were stunned. “The violence was beyond anything we had ever seen in the laboratory,” says Roger Hanlon, an ecologist at the Marine Biological Laboratory in Woods Hole, Massachusetts, who had been studying captive cuttlefish for years. Now, by carefully analyzing the behavior of the two males involved, he and his colleagues suggest the stepwise escalation of their fight likely required more brainpower than many researchers thought invertebrates had, they report this week in American Naturalist. The video (above) first shows a common European male cuttlefish (Sepia officinalis) mating with a female. While he escorts her to where she will lay her eggs, a second male suddenly appears and chases him away. But the first male doesn’t give up, and as his rival starts to get fresh with the female, the scuffle gets ever more intense. The rivals squirt ink at each other and jet about. Then, their dark markings turn even darker, and they engage in a quick battle of biting, grappling, and cork-screwing that soon sends the intruder scurrying off. Now that the scientists know how such explosive situations come about, they hope to recreate those circumstances in the lab to study male rivalries more systematically. © 2017 American Association for the Advancement of Science. A

Related chapters from BN8e: Chapter 15: Emotions, Aggression, and Stress; Chapter 12: Sex: Evolutionary, Hormonal, and Neural Bases
Related chapters from MM:Chapter 11: Emotions, Aggression, and Stress; Chapter 8: Hormones and Sex
Link ID: 23564 - Posted: 05.04.2017

By Gareth Cook The carnivore needs no introduction: fearsome, cold and brutal. But G. A. Bradshaw, known for her psychological work with elephants, asks readers to reconsider. In “Carnivore Minds,” she argues that predators are none of these things. She uses the orca for a case study in the evolution of morals; to explore emotional intelligence, her main example is the crocodile. Through “trans-species psychology,” Bradshaw asks us to consider the many ways that the animals we fear are far more similar to us than we might like to think. She answered questions from Mind Matters editor Gareth Cook. What first lead you to explore the minds of carnivores? Carnivores are a natural counterpoint to the herbivorous elephant, the subject of my previous book, Elephants on the Edge. There certainly are differences between white sharks and elephants, but the similarities are much greater. We know this because of what neuroscience has discovered — mammals, birds, fish, and reptiles (and now, it appears, invertebrates like bees and octopi) share common brain structures and processes that govern thinking and feeling. The scientific model used to explore human minds applies to other animals. This trans-species psychology allows us to see, even experience, the worlds of carnivores as they might — from the inside-out. White sharks, coyotes, and wolves not only have comparable mental and emotional capacities as humans, they are equally vulnerable to psychological trauma. This is what I discovered with the diagnosis of post-traumatic stress disorder (PTSD) in wild elephants. When elephants lose their homes and families, are subjected to mass killing, and are captured and incarcerated in zoos, they breakdown mentally and culturally and exhibit symptoms found in human prisoners and victims of genocide. As a result of hunting and persecution, pumas are showing symptoms of complex PTSD. © 2017 Scientific American

Related chapters from BN8e: Chapter 15: Emotions, Aggression, and Stress
Related chapters from MM:Chapter 11: Emotions, Aggression, and Stress
Link ID: 23449 - Posted: 04.05.2017