Links for Keyword: Brain imaging

Follow us on Facebook and Twitter, or subscribe to our mailing list, to receive news updates. Learn more.


Links 1 - 20 of 493

By Diana Kwon Glioblastomas, highly aggressive malignant brain tumors, have a high propensity for recurrence and are associated with low survival rates. Even when surgeons remove these tumors, deeply infiltrated cancer cells often remain and contribute to relapse. By harnessing neutrophils, a critical player in the innate immune response, scientists have devised a way to deliver drugs to kill these residual cells, according to a study published today (June 19) in Nature Nanotechnology. Neutrophils, the most common type of white blood cell, home in to areas of injury and inflammation to fight infections. Prior studies in both animals and humans have reported that neutrophils can cross the blood-brain barrier, and although these cells are not typically attracted to glioblastomas, they are recruited at sites of tumor removal in response to post-operative inflammation. To take advantage of the characteristics of these innate immune cells, researchers at China Pharmaceutical University encased paclitaxel, a traditional chemotherapy drug, with lipids. These liposome capsules were loaded into neutrophils and injected in the blood of three mouse models of glioblastoma. When the treatment was applied following surgical removal of the main tumor mass, the neutrophil-carrying drugs were able to cross the blood-brain barrier, destroy residual cancer cells, and slow the growth of new tumors. Overall, mice receiving treatment lived significantly longer than controls. © 1986-2017 The Scientist

Related chapters from BP7e: Chapter 2: Functional Neuroanatomy: The Nervous System and Behavior; Chapter 15: Emotions, Aggression, and Stress
Related chapters from MM:Chapter 2: Cells and Structures: The Anatomy of the Nervous System; Chapter 11: Emotions, Aggression, and Stress
Link ID: 23756 - Posted: 06.21.2017

Kathryn Hess can’t tell the difference between a coffee mug and a bagel. That’s the old joke anyway. Hess, a researcher at the Swiss Federal Institute of Technology, is one of the world’s leading thinkers in the field of algebraic topology—in super simplified terms, the mathematics of rubbery shapes. It uses algebra to attack the following question: If given two geometric objects, can you deform one to another without making any cuts? The answer, when it comes to bagels and coffee mugs, is yes, yes you can. (They only have one hole apiece, lol.) If that all sounds annoyingly abstract, well, it kind of is. Algebraic topologists have lived almost exclusively in multidimensional universes of their own calculation for decades. It’s only recently that pure mathematicians like Hess have begun applying their way of seeing the world to more applied, real-world problems. If you can call understanding the dynamics of a virtual rat brain a real-world problem. In a multimillion-dollar supercomputer in a building on the same campus where Hess has spent 25 years stretching and shrinking geometric objects in her mind, lives one of the most detailed digital reconstructions of brain tissue ever built. Representing 55 distinct types of neurons and 36 million synapses all firing in a space the size of pinhead, the simulation is the brainchild of Henry Markram. Markram and Hess met through a mutual researcher friend 12 years ago, right around the time Markram was launching Blue Brain—the Swiss institute’s ambitious bid to build a complete, simulated brain, starting with the rat. Over the next decade, as Markram began feeding terabytes of data into an IBM supercomputer and reconstructing a collection of neurons in the sensory cortex, he and Hess continued to meet and discuss how they might use her specialized knowledge to understand what he was creating. “It became clearer and clearer algebraic topology could help you see things you just can’t see with flat mathematics,” says Markram. But Hess didn’t officially join the project until 2015, when it met (and some would say failed) its first big public test.

Related chapters from BP7e: Chapter 2: Functional Neuroanatomy: The Nervous System and Behavior
Related chapters from MM:Chapter 2: Cells and Structures: The Anatomy of the Nervous System
Link ID: 23741 - Posted: 06.14.2017

By Neuroskeptic A high-profile paper in Cell reports on a new brain stimulation method that’s got many neuroscientists excited. The new technique, called temporal interference (TI) stimulation, is said to be able to reach structures deep inside the brain, using nothing more than scalp electrodes. Currently, the only way to stimulate deep brain structures is by implanting electrodes (wires) into the brain – which is an expensive and potentially dangerous surgical procedure. TI promises to make deep brain stimulation an everyday, non-invasive tool. But will it really work? The paper comes from Nir Grossman et al. from the lab of Edward S. Boyden at MIT. Their technique is based around applying two electrical fields to the subject’s head. Each field is applied using two scalp electrodes. It is the interaction between the two fields that creates brain stimulation. Both fields oscillate at slightly different frequencies, for instance 2 kHz and 2.01 kHz. Where these fields overlap, a pattern of interference is created which oscillates with an ‘envelope’ at a much lower frequency, say 10 Hz. The frequency of the two fields is too high to have any effect on neural activity, but the interference pattern does have an effect. Crucially, while the electric fields are strongest close to the electrodes, the interference pattern is most intense at a remote point – which could be deep in the brain.

Related chapters from BP7e: Chapter 3: Neurophysiology: The Generation, Transmission, and Integration of Neural Signals; Chapter 11: Motor Control and Plasticity
Related chapters from MM:Chapter 3: Neurophysiology: The Generation, Transmission, and Integration of Neural Signals; Chapter 5: The Sensorimotor System
Link ID: 23740 - Posted: 06.14.2017

By Hannah Osborne Scientists studying the brain have discovered that the organ operates on up to 11 different dimensions, creating multiverse-like structures that are “a world we had never imagined.” By using an advanced mathematical system, researchers were able to uncover architectural structures that appears when the brain has to process information, before they disintegrate into nothing. Their findings, published in the journal Frontiers in Computational Neuroscience, reveals the hugely complicated processes involved in the creation of neural structures, potentially helping explain why the brain is so difficult to understand and tying together its structure with its function. The team, led by scientists at the EPFL, Switzerland, were carrying out research as part of the Blue Brain Project—an initiative to create a biologically detailed reconstruction of the human brain. Working initially on rodent brains, the team used supercomputer simulations to study the complex interactions within different regions. In the latest study, researchers honed in on the neural network structures within the brain using algebraic topology—a system used to describe networks with constantly changing spaces and structures. This is the first time this branch of math has been applied to neuroscience. "Algebraic topology is like a telescope and microscope at the same time. It can zoom into networks to find hidden structures—the trees in the forest—and see the empty spaces—the clearings—all at the same time," study author Kathryn Hess said in a statement.

Related chapters from BP7e: Chapter 2: Functional Neuroanatomy: The Nervous System and Behavior
Related chapters from MM:Chapter 2: Cells and Structures: The Anatomy of the Nervous System
Link ID: 23739 - Posted: 06.14.2017

By Ashley Yeager A database of electron microscopy images reveals the connections of the entire female fruit fly brain. In this image, types of Kenyon cells (KC) in the mushroom body main calyx are labeled by color: αβc-KCs are green, αβs-KCs are yellowish brown, and gamma-KCs are blue. The white arrows point to visible presynaptic release sites.ZHENG ET AL. 2017A 21-million-image dataset of the female fruit fly brain is offering an unprecedented view of the cells and their connections that underlie the animal’s behavior. The full-brain survey, taken by electron microscopy, allowed researchers to describe all of the neural inputs into a region of the fly’s brain linked to learning, examine how tightly neurons are clustered in the area, and identify a new cell type. “This is the biggest whole brain imaged at high resolution,” Davi Bock of the Janelia Research Campus in Ashburn, VA, tells The Scientist. He and his colleagues published a preprint of their results on bioRxiv this month (May 22). Past studies have produced electron microscopy images with resolution high enough to reveal the wiring of the entire brain of smaller organisms, such as a nematode or a fruit fly larva, or sections from larger animals, including parts of the fly brain or a cat’s thalamus. Imaging the complete fruit fly brain “is nearly two orders of magnitude larger than the next-largest complete brain imaged at sufficient resolution to trace synaptic connectivity,” Bock and colleagues wrote in their report. © 1986-2017 The Scientist

Related chapters from BP7e: Chapter 2: Functional Neuroanatomy: The Nervous System and Behavior
Related chapters from MM:Chapter 2: Cells and Structures: The Anatomy of the Nervous System
Link ID: 23696 - Posted: 06.02.2017

By Alex Hickson This totally unique mash-up between neuroscience and art shows the stunningly complex beauty of the human brain. Your brain is terrifyingly complicated and is made up of approximately 86 billion neurons which work together as a biological machine to create who you are. But it takes some real cranium contortion to get your head around what those billions of signals and connected web of cells look like. Artist and neuroscientist Dr Greg Dunn combined talents with artist and physicist Dr Brian Edwards to produce this unprecedented work of wonder. But the shimmering never-before-achieved works of art are not as they appear. They are not brain scans but have been painstakingly created using a combination of neuroscience research, hand drawing, computer simulations and all finished off with glistening gold leaf. Both the artists say they wanted the work to remind people that the most marvelous machine in the universe is in our own heads and hope that the brilliant display will reveal the root of our shared humanity. ‘Self Reflected was created not to simplify the brain’s functionality for easier consumption, but to depict it as close to its native complexity as possible so that the viewer comes away with a visceral and emotional understanding of its beauty,’ they write.

Related chapters from BP7e: Chapter 2: Functional Neuroanatomy: The Nervous System and Behavior
Related chapters from MM:Chapter 2: Cells and Structures: The Anatomy of the Nervous System
Link ID: 23673 - Posted: 05.29.2017

Claude Messier, Alexandria Béland-Millar, The short answer is yes: certain brain regions do indeed consume more energy when engaged in particular tasks. Yet the specific regions involved and the amount of energy each consumes depend on the person’s experiences as well as each brain’s individual properties. Before we delve into the answer, it is important to understand how we measure a brain’s energy expenditure. Picture the colorful brain images researchers use to display neural activity. The colors typically represent the amount of oxygen or glucose various brain regions use during a task. Our brain is always active on some level—even when we are not engaged in a task—but it requires more energy to accomplish something that demands concentration such as moving, seeing or thinking. A simple example is that our primary visual cortex lights up more in brain scans—consuming more energy—when our eyes are open than when they are closed. Similarly, our primary motor cortex uses more energy if we move our hands than if we keep them still. Say you are learning a new skill—how to juggle or speak Spanish. Neuroscientists have made the fascinating observation that when we do something completely novel, a broad range of brain areas becomes active. As we become more skilled at the task, however, our brain becomes more focused: we require only the essential brain regions and need increasingly less energy to perform that task. Once we have mastered a skill—we become fluent in Spanish—only the brain areas directly involved remain active. Thus, learning a new skill requires more brainpower than a well-practiced activity. © 2017 Scientific American

Related chapters from BP7e: Chapter 2: Functional Neuroanatomy: The Nervous System and Behavior; Chapter 13: Homeostasis: Active Regulation of the Internal Environment
Related chapters from MM:Chapter 2: Cells and Structures: The Anatomy of the Nervous System; Chapter 9: Homeostasis: Active Regulation of the Internal Environment
Link ID: 23647 - Posted: 05.23.2017

By Ariana Eunjung Cha Congress unveiled a bipartisan budget late Sunday that contains a number of welcome surprises for researchers who had been panicking since March, when President Trump proposed deep funding cuts for science and health. Under the deal, the National Institutes of Health will get a $2 billion boost in fiscal year 2017, as it did the previous year. Trump had proposed cutting the NIH budget by about one-fifth, or $6 billion, in a draft 2018 budget. The NIH budget continues support for key areas of research, such as precision medicine and neuroscience, that were priorities under President Barack Obama; adds funding to target diseases such as Alzheimer's and cancer; and combats emerging threats such as antibiotic-resistant infections. Here are some of the big research winners: 1) Cancer: 2) Alzheimer's: Alzheimer's is now the sixth leading cause of death in the United States, yet it remains a mystery in terms of its cause and possible treatments. Public health experts expect the number of Americans with Alzheimer's to increase dramatically in the coming years as baby boomers age into their 70s and 80s. The new budget sets aside an additional $400 million for a total of $1.39 billion for Alzheimer's research. 5) BRAIN: Another Obama-era initiative, the Brain Research Through Advancing Innovative Neurotechnologies program, seeks to create a comprehensive guide to the anatomy and functioning of the brain. The budget includes $110 million for efforts to map the human brain. © 1996-2017 The Washington Post

Related chapters from BP7e: Chapter 2: Functional Neuroanatomy: The Nervous System and Behavior
Related chapters from MM:Chapter 2: Cells and Structures: The Anatomy of the Nervous System
Link ID: 23559 - Posted: 05.02.2017

By NICK WINGFIELD SEATTLE — Zoran Popović knows a thing or two about video games. A computer science professor at the University of Washington, Dr. Popović has worked on software algorithms that make computer-controlled characters move realistically in games like the science-fiction shooter “Destiny.” But while those games are entertainment designed to grab players by their adrenal glands, Dr. Popović’s latest creation asks players to trace lines over fuzzy images with a computer mouse. It has a slow pace with dreamy music that sounds like the ambient soundtrack inside a New Age bookstore. The point? To advance neuroscience. Since November, thousands of people have played the game, “Mozak,” which uses common tricks of the medium — points, leveling up and leader boards that publicly rank the performance of players — to crowdsource the creation of three-dimensional models of neurons. The Center for Game Science, a group at the University of Washington that Dr. Popović oversees, developed the game in collaboration with the Allen Institute for Brain Science, a nonprofit research organization founded by Paul Allen, the billionaire co-founder of Microsoft, that is seeking a better understanding of the brain. Dr. Popović had previously received wide attention in the scientific community for a puzzle game called “Foldit,” released nearly a decade ago, that harnesses the skills of players to solve riddles about the structure of proteins. The Allen Institute’s goal of cataloging the structure of neurons, the cells that transmit information throughout the nervous system, could one day help researchers understand the roots of neurodegenerative diseases like Alzheimer’s and Parkinson’s and their treatment. Neurons come in devilishly complex shapes and staggering quantities — about 100 million and 87 billion in mouse and human brains, both of which players can work on in Mozak. © 2017 The New York Times Company

Related chapters from BP7e: Chapter 2: Functional Neuroanatomy: The Nervous System and Behavior
Related chapters from MM:Chapter 2: Cells and Structures: The Anatomy of the Nervous System
Link ID: 23533 - Posted: 04.25.2017

Angelo Young Billionaire magnate Elon Musk is trying to fill the world with electric cars and solar panels while at the same time aiming to deploy reusable rockets to eventually colonize Mars. As if that weren’t enough for his plate, Musk recently announced the launch of Neuralink, a neuroscience startup seeking to create a way to interface human brains with computers. According to him, this would be part of guarding humanity against what Musk considers a threat from the rise of artificial intelligence. He envisions a lattice of electrodes implanted into the human skull that could allow people to download and upload thoughts as well as treat brain conditions such as epilepsy or bipolar disorders. Musk’s proposition seems as outlandish and unlikely as his vision for the Hyperloop rapid transport system, but like his other big ideas, there’s real science behind it. Figuring out what’s really involved in efforts to sync brains with computers was part of what inspired Adam Piore to write “The Body Builders: Inside the Science of the Engineered Human,” which was released last month by HarperCollins. Written in plain language that gives nonscientists a way to separate the science from the sensational, “The Body Builders” is a fascinating dive into what’s happening right now in bioengineering research — from brain-computer interfaces to bionic limbs — that will redefine human-machine interactions in the years to come. Piore, an award-winning journalist who has written extensively about scientific advances, spoke to Salon recently about just how close we are to being able to read one another’s thoughts through electrodes and the processing power of modern computers. © 2017 Salon Media Group, Inc.

Related chapters from BP7e: Chapter 2: Functional Neuroanatomy: The Nervous System and Behavior; Chapter 18: Attention and Higher Cognition
Related chapters from MM:Chapter 2: Cells and Structures: The Anatomy of the Nervous System; Chapter 14: Attention and Consciousness
Link ID: 23503 - Posted: 04.18.2017

By Ryan Cross Microscopes reveal miniscule wonders by making things seem bigger. Just imagine what scientists could see if they could also make things bigger. A new strategy to blow brains up does just that. Researchers previously invented a method for injecting a polyacrylate mesh into brain tissue, the same water-absorbing and expanding molecule that makes dirty diapers swell up. Just add water, and the tissue enlarges to 4.5 times its original size. But it wasn’t good enough to see everything. The brain is full of diminutive protrusions called dendritic spines lining the signal receiving end of a neuron. Hundreds to thousands of these nubs help strengthen or weaken an individual dendrite’s connection to other neurons in the brain. The nanoscale size of these spines makes studying them with light microscopes impossible or blurry at best, however. Now, the same group has overcome this barrier in an improved method called iterative expansion microscopy, described today in Nature Methods. Here, the tissue is expanded once, the crosslinked mesh is cleaved, and then the tissue is expanded again, resulting in roughly 20-fold enlargement. Neurons are then visualized by light-emitting molecules linked to antibodies which latch onto specified proteins. The technique has yielded detailed images showing the formation of proteins along synapses in mice, as well as detailed renderings of dendritic spines (seen in the image above) in the mouse hippocampus—a center or learning and memory in the brain. The advance could enable neuroscientists to map the many individual connections between neurons across the brain and the unique arrangement of receptors that turn brain circuits on and off. © 2017 American Association for the Advancement of Science

Related chapters from BP7e: Chapter 2: Functional Neuroanatomy: The Nervous System and Behavior
Related chapters from MM:Chapter 2: Cells and Structures: The Anatomy of the Nervous System
Link ID: 23500 - Posted: 04.18.2017

Richard A. Friedman I was doing KenKen, a math puzzle, on a plane recently when a fellow passenger asked why I bothered. I said I did it for the beauty. O.K., I’ll admit it’s a silly game: You have to make the numbers within the grid obey certain mathematical constraints, and when they do, all the pieces fit nicely together and you get this rush of harmony and order. Still, it makes me wonder what it is about mathematical thinking that is so elegant and aesthetically appealing. Is it the internal logic? The unique mix of simplicity and explanatory power? Or perhaps just its pure intellectual beauty? I’ve loved math since I was a kid because it felt like a big game and because it seemed like the laziest thing you could do mentally. After all, how many facts do you need to remember to do math? Later in college, I got excited by physics, which I guess you could say is just a grand exercise in applying math to understand the universe. My roommate, a brainy math major, used to bait me, saying that I never really understood the math I was using. I would counter that he never understood what on Earth the math he studied was good for. We were both right, but he’d be happy to know that I’ve come around to his side: Math is beautiful on a purely abstract level, quite apart from its ability to explain the world. We all know that art, music and nature are beautiful. They command the senses and incite emotion. Their impact is swift and visceral. How can a mathematical idea inspire the same feelings? Well, for one thing, there is something very appealing about the notion of universal truth — especially at a time when people entertain the absurd idea of alternative facts. The Pythagorean theorem still holds, and pi is a transcendental number that will describe all perfect circles for all time. © 2017 The New York Times Company

Related chapters from BP7e: Chapter 18: Attention and Higher Cognition; Chapter 2: Functional Neuroanatomy: The Nervous System and Behavior
Related chapters from MM:Chapter 14: Attention and Consciousness; Chapter 2: Cells and Structures: The Anatomy of the Nervous System
Link ID: 23498 - Posted: 04.17.2017

By Niall Firth The firing of every neuron in an animal’s body has been recorded, live. The breakthrough in imaging the nervous system of a hydra – a tiny, transparent creature related to jellyfish – as it twitches and moves has provided insights into how such simple animals control their behaviour. Similar techniques might one day help us get a deeper understanding of how our own brains work. “This could be important not just for the human brain but for neuroscience in general,” says Rafael Yuste at Columbia University in New York City. Instead of a brain, hydra have the most basic nervous system in nature, a nerve net in which neurons spread throughout its body. Even so, researchers still know almost nothing about how the hydra’s few thousand neurons interact to create behaviour. To find out, Yuste and colleague Christophe Dupre genetically modified hydra so that their neurons glowed in the presence of calcium. Since calcium ions rise in concentration when neurons are active and fire a signal, Yuste and Dupre were able to relate behaviour to activity in glowing circuits of neurons. For example, a circuit that seems to be involved in digestion in the hydra’s stomach-like cavity became active whenever the animal opened its mouth to feed. This circuit may be an ancestor of our gut nervous system, the pair suggest. © Copyright Reed Business Information Ltd.

Related chapters from BP7e: Chapter 2: Functional Neuroanatomy: The Nervous System and Behavior; Chapter 6: Evolution of the Brain and Behavior
Related chapters from MM:Chapter 2: Cells and Structures: The Anatomy of the Nervous System
Link ID: 23483 - Posted: 04.12.2017

By Matt Reynolds If you’re happy and you know it, clap someone else’s hands. A muscle stimulation system aims to evoke empathy by triggering involuntary hand gestures in one person in response to mood changes in another. “If you’re moving in the same way as another person you might understand that person better,” says Max Pfeiffer at the University of Hannover in Germany. Pfeiffer and his team wired up four people to an EEG machine that measured changes in the electrical activity in their brain as they watched film clips intended to provoke three emotional responses: amusement, anger and sadness. These people were the “emotion senders”. Each sender was paired with an “emotion recipient” who wore electrodes on their arms that stimulated their muscles and caused their arms and hands to move when the mood of their partner changed. The gestures they made were based on American Sign Language for amusement, anger and sadness. To express amusement, volunteers had their muscles stimulated to raise one arm, to express anger they raised an arm and made a claw gesture, and to express sadness they slowly slid an arm down their chest. These resemble natural movements associated with the feelings, so the team hypothesised that they would evoke the relevant emotion. Asked to rate how well the gestures corresponded to the emotions, the volunteers largely matched the gestures to the correct mood. © Copyright Reed Business Information Ltd.

Related chapters from BP7e: Chapter 11: Motor Control and Plasticity; Chapter 3: Neurophysiology: The Generation, Transmission, and Integration of Neural Signals
Related chapters from MM:Chapter 5: The Sensorimotor System; Chapter 3: Neurophysiology: The Generation, Transmission, and Integration of Neural Signals
Link ID: 23302 - Posted: 03.02.2017

Ed Yong It’s a good time to be interested in the brain. Neuroscientists can now turn neurons on or off with just a flash of light, allowing them to manipulate the behavior of animals with exceptional precision. They can turn brains transparent and seed them with glowing molecules to divine their structure. They can record the activity of huge numbers of neurons at once. And those are just the tools that currently exist. In 2013, Barack Obama launched the Brain Research through Advancing Innovative Neurotechnologies (BRAIN) Initiative—a $115 million plan to develop even better technologies for understanding the enigmatic gray blobs that sit inside our skulls. John Krakaeur, a neuroscientist at Johns Hopkins Hospital, has been asked to BRAIN Initiative meetings before, and describes it like “Maleficent being invited to Sleeping Beauty’s birthday.” That’s because he and four like-minded friends have become increasingly disenchanted by their colleagues’ obsession with their toys. And in a new paper that’s part philosophical treatise and part shot across the bow, they argue that this technological fetish is leading the field astray. “People think technology + big data + machine learning = science,” says Krakauer. “And it’s not.” He and his fellow curmudgeons argue that brains are special because of the behavior they create—everything from a predator’s pounce to a baby’s cry. But the study of such behavior is being de-prioritized, or studied “almost as an afterthought.” Instead, neuroscientists have been focusing on using their new tools to study individual neurons, or networks of neurons. According to Krakauer, the unspoken assumption is that if we collect enough data about the parts, the workings of the whole will become clear. If we fully understand the molecules that dance across a synapse, or the electrical pulses that zoom along a neuron, or the web of connections formed by many neurons, we will eventually solve the mysteries of learning, memory, emotion, and more. “The fallacy is that more of the same kind of work in the infinitely postponed future will transform into knowing why that mother’s crying or why I’m feeling this way,” says Krakauer. And, as he and his colleagues argue, it will not. © 2017 by The Atlantic Monthly Group

Related chapters from BP7e: Chapter 2: Functional Neuroanatomy: The Nervous System and Behavior
Related chapters from MM:Chapter 2: Cells and Structures: The Anatomy of the Nervous System
Link ID: 23292 - Posted: 02.28.2017

By Jennifer Couzin-Frankel At least two dozen junior and senior researchers are stuck in scientific limbo after being barred from publishing data collected over a 25-year period at a National Institutes of Health (NIH) lab. The unusual ban follows the firing last summer of veteran neurologist Allen Braun by the National Institute on Deafness and Other Communication Disorders (NIDCD) for what many scientists have told Science are relatively minor, if widespread, violations of his lab’s experimental protocol. Most of the violations, which were unearthed after Braun himself reported a problem, involve the prescreening or vetting of volunteers for brain imaging scans and other experiments on language processing. The fallout from the case was recently chronicled on a blog by one of Braun’s former postdocs, and it highlights a not-uncommon problem across science: the career harm to innocent junior investigators following lab misconduct or accidental violations on the part of senior scientists. But this case, say those familiar with it, is extreme. “We’re truly collateral damage,” says Nan Bernstein Ratner of the University of Maryland in College Park, who researches stuttering. She spent 5 years collaborating with Braun. Now, two of her graduate students have had to shift their master’s theses topics, and an undergraduate she mentored cannot publish a planned paper. “The process has been—you can use this term—surreal.” © 2017 American Association for the Advancement of Science

Related chapters from BP7e: Chapter 2: Functional Neuroanatomy: The Nervous System and Behavior; Chapter 16: Psychopathology: Biological Basis of Behavior Disorders
Related chapters from MM:Chapter 2: Cells and Structures: The Anatomy of the Nervous System; Chapter 12: Psychopathology: The Biology of Behavioral Disorders
Link ID: 23265 - Posted: 02.22.2017

JoAnna Klein Some microscopes today are so powerful that they can create a picture of the gap between brain cells, which is thousands of times smaller than the width of a human hair. They can even reveal the tiny sacs carrying even tinier nuggets of information to cross over that gap to form memories. And in colorful snapshots made possible by a giant magnet, we can see the activity of 100 billion brain cells talking. Decades before these technologies existed, a man hunched over a microscope in Spain at the turn of the 20th century was making prescient hypotheses about how the brain works. At the time, William James was still developing psychology as a science and Sir Charles Scott Sherrington was defining our integrated nervous system. Meet Santiago Ramón y Cajal, an artist, photographer, doctor, bodybuilder, scientist, chess player and publisher. He was also the father of modern neuroscience. “He’s one of these guys who was really every bit as influential as Pasteur and Darwin in the 19th century,” said Larry Swanson, a neurobiologist at the University of Southern California who contributed a biographical section to the new book “The Beautiful Brain: The Drawings of Santiago Ramón y Cajal.” “He’s harder to explain to the general public, which is probably why he’s not as famous.” Last month, the Weisman Art Museum in Minneapolis opened a traveling exhibit that is the first dedicated solely to Ramón y Cajal’s work. It will make stops in Minneapolis; Vancouver, British Columbia; New York; Cambridge, Mass.; and Chapel Hill, N.C., through April 2019. Ramón y Cajal started out with an interest in the visual arts and photography — he even invented a method for making color photos. But his father pushed him into medical school. Without his artistic background, his work might not have had as much impact, Dr. Swanson said. © 2017 The New York Times Company

Related chapters from BP7e: Chapter 2: Functional Neuroanatomy: The Nervous System and Behavior; Chapter 1: Biological Psychology: Scope and Outlook
Related chapters from MM:Chapter 2: Cells and Structures: The Anatomy of the Nervous System; Chapter 1: An Introduction to Brain and Behavior
Link ID: 23251 - Posted: 02.18.2017

By Kelly Clancy More than two hundred years ago, a French weaver named Joseph Jacquard invented a mechanism that greatly simplified textile production. His design replaced the lowly draw boy—the young apprentice who meticulously chose which threads to feed into the loom to create a particular pattern—with a series of paper punch cards, which had holes dictating the lay of each stitch. The device was so successful that it was repurposed in the first interfaces between humans and computers; for much of the twentieth century, programmers laid out their code like weavers, using a lattice of punched holes. The cards themselves were fussy and fragile. Ethereal information was at the mercy of its paper substrate, coded in a language only experts could understand. But successive computer interfaces became more natural, more flexible. Immutable program instructions were softened to “If x, then y. When a, try b.” Now, long after Jacquard’s invention, we simply ask Amazon’s Echo to start a pot of coffee, or Apple’s Siri to find the closest car wash. In order to make our interactions with machines more natural, we’ve learned to model them after ourselves. Early in the history of artificial intelligence, researchers came up against what is referred to as Moravec’s paradox: tasks that seem laborious to us (arithmetic, for example) are easy for a computer, whereas those that seem easy to us (like picking out a friend’s voice in a noisy bar) have been the hardest for A.I. to master. It is not profoundly challenging to design a computer that can beat a human at a rule-based game like chess; a logical machine does logic well. But engineers have yet to build a robot that can hopscotch. The Austrian roboticist Hans Moravec theorized that this might have something to do with evolution. Since higher reasoning has only recently evolved—perhaps within the last hundred thousand years—it hasn’t had time to become optimized in humans the way that locomotion or vision has. The things we do best are largely unconscious, coded in circuits so ancient that their calculations don’t percolate up to our experience. But because logic was the first form of biological reasoning that we could perceive, our thinking machines were, by necessity, logic-based. © 2017 Condé Nast.

Related chapters from BP7e: Chapter 2: Functional Neuroanatomy: The Nervous System and Behavior
Related chapters from MM:Chapter 2: Cells and Structures: The Anatomy of the Nervous System
Link ID: 23245 - Posted: 02.17.2017

Hannah Devlin A transportable brain-scanning helmet that could be used for rapid brain injury assessments of stroke victims and those felled on the sports pitch or battlefield is being tested by US scientists. The wearable device, known as the PET helmet, is a miniaturised version of the hospital positron emission tomography (PET) scanner, a doughnut-shaped machine which occupies the volume of a small room. Julie Brefczynski-Lewis, the neuroscientist leading the project at West Virginia University, said that the new helmet could dramatically speed up diagnosis and make the difference between a positive outcome and devastating brain damage or death for some patients. “You could roll it right to their bedside and put it on their head,” she said ahead of a presentation at the American Association for the Advancement of Science’s (AAAS) annual meeting in Boston. “Time is brain for stroke.” Despite being only the size of a motorbike helmet, the new device produces remarkably detailed images that could be used to identify regions of trauma to the brain in the ambulance on the way to hospital or at a person’s bedside. The device is currently being tested on healthy volunteers, but could be used clinically within two years, the team predicted.

Related chapters from BP7e: Chapter 2: Functional Neuroanatomy: The Nervous System and Behavior; Chapter 19: Language and Hemispheric Asymmetry
Related chapters from MM:Chapter 2: Cells and Structures: The Anatomy of the Nervous System; Chapter 15: Brain Asymmetry, Spatial Cognition, and Language
Link ID: 23244 - Posted: 02.17.2017

By Pallab Ghosh Scientists are appealing for more people to donate their brains for research after they die. They say they are lacking the brains of people with disorders such as depression and post-traumatic stress disorder. In part, this shortage results from a lack of awareness that such conditions are due to changes in brain wiring. The researchers' aim is to develop new treatments for mental and neurological disorders. The human brain is as beautiful as it is complex. Its wiring changes and grows as we do. The organ is a physical embodiment of our behaviour and who we are. In recent years, researchers have made links between the shape of the brain and mental and neurological disorders. Most of their specimens are from people with mental or neurological disorders. Samples are requested by scientists to find new treatments for Parkinson's, Alzheimer's and a whole host of psychiatric disorders. But there is a problem. Scientists at McLean Hospital and at brain banks across the world do not have enough specimens for the research community. According Dr Kerry Ressler, who is the chief scientific officer at McLean hospital, new treatments for many mental and neurological diseases are within the grasp of the research community. However, he says it is the lack of brain tissue that is holding back their development. © 2017 BBC.

Related chapters from BP7e: Chapter 2: Functional Neuroanatomy: The Nervous System and Behavior
Related chapters from MM:Chapter 2: Cells and Structures: The Anatomy of the Nervous System
Link ID: 23241 - Posted: 02.17.2017