Links for Keyword: Intelligence
Follow us on Facebook or subscribe to our mailing list, to receive news updates. Learn more.
By Stephanie Pappas Senior Writer Parrots can draw conclusions about where to find a food reward not only from clues as to its location, but also from the absence of clues — an ability previously only seen in humans and other apes. In a new study, researchers tested African Grey parrots on their reasoning abilities by shaking empty boxes and boxes filled with food so that the parrots could hear the snacks rattling around. To pick the box that would win them a treat, the parrots had to figure out that the sound indicated food and that a lack of sound from one box probably meant food in the other. It's a challenge that even human children can't reason through until about age 3. "It suggests that Grey parrots have some understanding of causality and that they can use this to reason about the world," study scientist Christian Schloegl, a researcher at the University of Vienna, told LiveScience. African Grey parrots are known to be clever, as are many other birds. In earlier studies with Grey parrots, researchers have shown them two opaque boxes, one full of food and one empty. When the parrots are shown that one box has no food in it, they almost always pick the second box in search of a treat. This could be because the parrots infer that if one box is empty, the other is likely full, Schloegl said. But researchers couldn't rule out that they were simply avoiding the empty box for some unknown reason. © 2012 NBCNews.com
Related chapters from BN: Chapter 6: Evolution of the Brain and Behavior; Chapter 18: Attention and Higher Cognition
Related chapters from MM:Chapter 0: ; Chapter 14: Attention and Higher Cognition
Link ID: 17142 - Posted: 08.08.2012
By Melissa Healy Los Angeles Times Measuring human intelligence may be controversial and oh-so-very-tricky to do. But like obscenity, we think we know it when we see it. A new study, however, demonstrates a more rigorous way to see and measure differences in intelligence between individuals. It finds that connectedness among the brain's disparate regions is a key factor that separates the plodding from the penetrating. As many researchers have long suspected, intelligence does have a "seat" in the human brain: an area just behind each of the temples called the lateral prefrontal cortex. But researchers writing in the journal Neuroscience found that human behavior that is exceptionally flexible, responsive and capable of navigating complexity requires something beyond a strong and active prefrontal cortex: strong and agile runners must link that seat to brain regions involved in perception, memory, language and mobility. The researchers estimate that the strength of those connections, as measured when subjects rested between mental tasks, explains about 10% of differences in intelligence among individuals. That makes this measure an even better predictor of intelligence than brain size -- a measure that scientists believe may explain about 7% of the variation in intelligence among individuals. To detect this relationship, the Neuroscience study compared functional magnetic resonance imaging (fMRI) brain scans of 78 men and women between 18 and 40 years old with those subjects' performance on tests of cognitive performance that required "fluid intelligence" and "cognitive control." Subjects, for instance, were asked to count backwards by, say, nine, or to watch a series of visual images and then indicate whether a single image shown had been among them. Copyright 2012
Related chapters from BN: Chapter 1: Introduction: Scope and Outlook; Chapter 2: Functional Neuroanatomy: The Cells and Structure of the Nervous System
Related chapters from MM:Chapter 20: ; Chapter 1: Cells and Structures: The Anatomy of the Nervous System
Link ID: 17117 - Posted: 08.04.2012
by Michael Balter Many children (and adults) have heard Aesop's fable about the crow and the pitcher. A thirsty crow comes across a pitcher partly filled with water but can't reach the water with his beak. So he keeps dropping pebbles into the pitcher until the water level rises high enough. A new study finds that both young children and members of the crow family are good at solving this problem, but children appear to learn it in a very different ways from birds. Recent studies, particularly ones conducted by Nicola Clayton's experimental psychology group at the University of Cambridge in the United Kingdom have shown that members of the crow family are no birdbrains when it comes to cognitive abilities. They can make and use tools, plan for the future, and possibly even figure out what other birds are thinking, although that last claim is currently being debated. A few years ago, two members of Clayton's group showed that rooks can learn to drop stones into a water-filled tube to get at a worm floating on the surface. And last year, a team led by Clayton's graduate student Lucy Cheke reported similar experiments with Eurasian jays: Using three different experimental setups, Cheke and her colleagues found that the jays could solve the puzzle as long as the basic mechanism responsible for raising the water level was clear to the birds. To explore how learning in children might differ from rooks, jays, and other members of the highly intelligent crow family, Cheke teamed up with a fellow Clayton lab member, psychologist Elsa Loissel, to try the same three experiments on local schoolchildren aged 4 to 10 years. Eighty children were recruited for the experiments, which took place at their school with the permission of their parents. © 2010 American Association for the Advancement of Science
Related chapters from BN: Chapter 1: Introduction: Scope and Outlook; Chapter 6: Evolution of the Brain and Behavior
Related chapters from MM:Chapter 20:
Link ID: 17092 - Posted: 07.26.2012
By Scott Barry Kaufman Scott: So what do you make of general intelligence? John Tooby: [chuckles] To heck if I know! ***Exchange at the 2006 Annual Meeting of the Human Behavior and Evolution Society*** Obviously, John Tooby, one of the founders of evolutionary psychology, was being a bit cheeky. But there was also a very large grain of truth to his response. Traditionally, evolutionary psychologists have focused their research efforts on discovering dedicated information-processing mechanisms (‘modules’) that operate on specific content. Evolutionary psychologists have done an impressive job looking at these species-typical cognitive adaptations, elucidating the nature of things that are universally important to humans such as love, sex, social status, music, and art. Traveling on a separate path, however, intelligence researchers have amassed just as much evidence that individual differences among many disparate cognitive abilities are correlated with one another. This suggests the possibility of causal forces that influence performance on most cognitively complex cognitive tests, regardless of the content. Recently intelligence researchers have proposed two possible causal forces: (a) deleterious mutations or developmental abnormalities that influence many different cognitive mechanisms or (b) cognitive mechanisms that are utilized to some extent in most or all complex cognitive tasks. © 2012 Scientific American,
Related chapters from BN: Chapter 18: Attention and Higher Cognition; Chapter 6: Evolution of the Brain and Behavior
Related chapters from MM:Chapter 14: Attention and Higher Cognition
Link ID: 16983 - Posted: 06.28.2012
By Jason G. Goldman Yogi Bear always claimed that he was smarter than the average bear, but the average bear appears to be smarter than once thought. Psychologists Jennifer Vonk of Oakland University and Michael J. Beran of Georgia State University have taken a testing methodology commonly used for primates and shown not only that the methodology can be more widely used, but also that bears can distinguish among differing numerosities. Numerical cognition is perhaps the best understood of the core building blocks of the mind. Decades of research have provided evidence for the numerical abilities of gorillas, chimpanzees, rhesus, capuchin, and squirrel monkeys, lemurs, dolphins, elephants, birds, and fish. Pre-linguistic human infants share the same mental modules for representing and understanding numbers as those non-human animal species. Each of these species is able to precisely count sets of objects up to three, but after that, they can only approximate the number of items in a set. Even human adults living in cultures whose languages have not developed an explicit count list must rely on approximation rather than precision for quantities larger than three. For this reason, it is easier for infants and animals to distinguish thirty from sixty than it is to distinguish thirty from forty, since the 1:2 ratio (30:60) is smaller than the 3:4 ratio (30:40). As the ratios increase, the difference between the two sets becomes smaller, making it more difficult to discriminate between them without explicit counting. Given that species as divergent as humans and mosquitofish represent number in the same ways, subject to the same (quantity-based and ratio-based) limits and constraints, it stands to reason that the ability to distinguish among two quantities is evolutionarily-ancient. © 2012 Scientific American
Related chapters from BN: Chapter 6: Evolution of the Brain and Behavior; Chapter 1: Introduction: Scope and Outlook
Related chapters from MM:Chapter 0: ; Chapter 20:
Link ID: 16949 - Posted: 06.21.2012
By JAMES GORMAN The extremes of animal behavior can be a source of endless astonishment. Books have been written about insect sex. The antics of dogs and cats are sometimes hard to believe. And birds, those amazing birds: They build elaborate nests, learn lyrical songs, migrate impossibly long distances. But “Gifts of the Crow,” by John N. Marzluff and Tony Angell, includes a description of one behavior that even Aesop never imagined. “On Kinkazan Island in northern Japan,” the authors write, “jungle crows pick up deer feces — dry pellets of dung — and deftly wedge them in the deer’s ears.” What!? I checked the notes at the back of the book, and this account comes from another book, written in Japanese. So I can’t give any more information on this astonishing claim, other than to say that Dr. Marzluff, of the University of Washington, and Mr. Angell, an artist and observer of birds, think that the crows do it in the spirit of fun. Deer droppings, it must be said, are only one of the crows’ gifts. The authors’ real focus is on the way that crows can give us “the ephemeral and profound connection to nature that many people crave.” To that end, however, they tell some wild anecdotes and make some surprising assertions. Many of the behaviors they describe — crows drinking beer and coffee, whistling and calling dogs and presenting gifts to people who feed them — are based on personal testimony and would seem to fall into the category of anecdote rather than science. © 2012 The New York Times Company
Related chapters from BN: Chapter 6: Evolution of the Brain and Behavior; Chapter 1: Introduction: Scope and Outlook
Related chapters from MM:Chapter 0: ; Chapter 20:
Link ID: 16902 - Posted: 06.12.2012
by Andy Coghlan A massive genetics study relying on fMRI brain scans and DNA samples from over 20,000 people has revealed what is claimed as the biggest effect yet of a single gene on intelligence – although the effect is small. There is little dispute that genetics accounts for a large amount of the variation in people's intelligence, but studies have consistently failed to find any single genes that have a substantial impact. Instead, researchers typically find that hundreds of genes contribute. Following a brain study on an unprecedented scale, an international collaboration has now managed to tease out a single gene that does have a measurable effect on intelligence. But the effect – although measurable – is small: the gene alters IQ by just 1.29 points. According to some researchers, that essentially proves that intelligence relies on the action of a multitude of genes after all. "It seems like the biggest single-gene impact we know of that affects IQ," says Paul Thompson of the University of California, Los Angeles, who led the collaboration of 207 researchers. "But it's not a massive effect on IQ overall," he says. The variant is in a gene called HMGA2, which has previously been linked with people's height. At the site of the relevant mutation, the IQ difference depends on a change of a single DNA "letter" from C, standing for cytosine, to T, standing for thymine. © Copyright Reed Business Information Ltd.
Related chapters from BN: Chapter 1: Introduction: Scope and Outlook; Chapter 7: Life-Span Development of the Brain and Behavior
Related chapters from MM:Chapter 20: ; Chapter 4: Development of the Brain
Link ID: 16667 - Posted: 04.17.2012
OUR intelligence, more than any particular behaviour or anatomical feature, is what distinguishes humans from the myriad other species with which we share our planet. It is a key factor in everything from our anatomy to our technology. To ask why we are intelligent is to ask why we are human; it admits no discrete answer. But let's ask it here anyway. Why are we, alone in nature, so smart? Perhaps we are not. Maybe our anthropocentric conceit prevents us from fully appreciating the intelligence of other animals, be they ants, cephalopods or cetaceans. As Douglas Adams put it: "Man had always assumed that he was more intelligent than dolphins because he had achieved so much - the wheel, New York, wars and so on - whilst all the dolphins had ever done was muck about in the water having a good time. But conversely, the dolphins had always believed that they were far more intelligent than man - for precisely the same reasons." So let's rephrase the question. There is a cluster of abilities that seems unique to humans: language, tool use, culture and empathy. Other animals may have rudimentary forms of these abilities, but they do not approach humans' sophistication and flexibility. Why not? Some come closer than others. German psychologists say they have identified a chimp whose mental abilities far surpass those of its peers (see "Chimp prodigy shows signs of human-like intelligence"). Intriguingly, they go on to suggest that this might be because Natasha, the simian prodigy, exhibits strong social-reasoning skills, such as learning from others. These are the same skills to which the explosive development of human intelligence is increasingly attributed. © Copyright Reed Business Information Ltd.
Related chapters from BN: Chapter 6: Evolution of the Brain and Behavior; Chapter 1: Introduction: Scope and Outlook
Related chapters from MM:Chapter 0: ; Chapter 20:
Link ID: 16580 - Posted: 03.27.2012
By Melinda Wenner Moyer Is intelligence innate, or can you boost it with effort? The way you answer that question may determine how well you learn. Those who think smarts are malleable are more likely to bounce back from their mistakes and make fewer errors in the future, according to a study published last October in Psychological Science. Researchers at Michigan State University asked 25 undergraduate students to participate in a simple, repetitive computer task: they had to press a button whenever the letters that appeared on the screen conformed to a particular pattern. When they made a mistake, which happened about 9 percent of the time, the subjects realized it almost immediately—at which point their brain produced two tiny electrical responses that the researchers recorded using electrodes. The first reaction indicates awareness that a mistake was made, whereas the second, called error positivity, is believed to represent the desire to fix that slipup. Later, the researchers asked the students whether they believed intelligence was fixed or could be learned. Although everyone slowed down after erring, those who were “growth-minded”—that is, people who considered intelligence to be pliable—elicited stronger error-positivity responses than the other subjects. They subsequently made fewer mistakes, too. “Everybody says, ‘Oh, I did something wrong, I should slow down,’ but it was only the growth-minded individuals who actually did something with that information and made it better,” explains lead author Jason Moser, a clinical psychologist at Michigan State. © 2012 Scientific American,
Related chapters from BN: Chapter 17: Learning and Memory; Chapter 1: Introduction: Scope and Outlook
Related chapters from MM:Chapter 13: Memory and Learning; Chapter 20:
Link ID: 16540 - Posted: 03.19.2012
Heidi Ledford A Scottish intelligence study that began 80 years ago has borne new fruit. Researchers have tracked down the study’s surviving participants — who joined the study when they were 11 years old — to estimate the role that our genes have in maintaining intelligence through to old age. Researchers have long been interested in understanding how cognition changes with age, and why these changes are more rapid in some people than in others. But, in the past, studies of age-related intelligence changes were often performed when the subjects were already elderly. Then, in the late 1990s, research psychologist Ian Deary of the University of Edinburgh, UK, and his colleagues realized that Scotland had two data sets that would allow them to take such studies a step further. In 1932 and 1947, officials had conducted a sweeping study of intelligence among thousands of 11-year-old Scottish children. The data, Deary learned, had been kept confidential for decades. He and his colleagues set about tracking down the original participants, many of whom did not remember taking the original tests. The team collected DNA samples and performed fresh intelligence tests in nearly 2,000 of the original participants, then aged 65 or older. © 2012 Nature Publishing Group,
Related chapters from BN: Chapter 1: Introduction: Scope and Outlook; Chapter 7: Life-Span Development of the Brain and Behavior
Related chapters from MM:Chapter 20: ; Chapter 4: Development of the Brain
Link ID: 16270 - Posted: 01.19.2012
by Celeste Biever HOW intelligent are you? I'd like to think I know how smart I am, but the test in front of me is making me reconsider. On my computer screen, a puzzling row of boxes appears: some contain odd-looking symbols, while others are empty. I click on one of the boxes. A red sign indicates I made an error. Dammit. I concentrate, and try again. Yes, a green reward! Despite this small success, I am finding it tough to make sense of what's going on: this is unlike any exam I've ever done. Perhaps it's not surprising that it feels unfamiliar - it's not your average IQ test. I am taking part in the early stages of an effort to develop the first "universal" intelligence test. While traditional IQ and psychometric tests are designed to home in on differences between people, a universal test would rank humans, robots, chimps and perhaps even aliens on a single scale - using a mathematically derived definition of intelligence, rather than one tainted by human bias. What's the point? The idea for a universal test has emerged from the study of artificial intelligence and a desire for better ways to measure it. Next year, the most famous test for gauging the smarts of machines will be widely celebrated on the 100th anniversary of the birth of Alan Turing, its creator. The Turing test is, however, flawed. To pass it, a machine has to fool a human judge into believing he or she is conversing with another person. But exactly how much smarter are you than the cleverest robot? The test cannot tell you. It also cannot measure intelligence greater than a human's. Machines are getting smarter - possibly smarter than us, soon - so we need a much better way to gauge just how clever they are. © Copyright Reed Business Information Ltd.
Related chapters from BN: Chapter 6: Evolution of the Brain and Behavior; Chapter 1: Introduction: Scope and Outlook
Related chapters from MM:Chapter 0: ; Chapter 20:
Link ID: 15805 - Posted: 09.15.2011
By Christopher Eppig Being smart is the most expensive thing we do. Not in terms of money, but in a currency that is vital to all living things: energy. One study found that newborn humans spend close to 90 percent of their calories on building and running their brains. (Even as adults, our brains consume as much as a quarter of our energy.) If, during childhood, when the brain is being built, some unexpected energy cost comes along, the brain will suffer. Infectious disease is a factor that may rob large amounts of energy away from a developing brain. This was our hypothesis, anyway, when my colleagues, Corey Fincher and Randy Thornhill, and I published a paper on the global diversity of human intelligence. A great deal of research has shown that average IQ varies around the world, both across nations and within them. The cause of this variation has been of great interest to scientists for many years. At the heart of this debate is whether these differences are due to genetics, environment or both. Higher IQ predicts a wide range of important factors, including better grades in school, a higher level of education, better health, better job performance, higher wages, and reduced risk of obesity. So having a better understanding of variations in intelligence might yield a greater understanding of these other issues as well. Before our work, several scientists had offered explanations for the global pattern of IQ. Nigel Barber argued that variation in IQ is due primarily to differences in education. Donald Templer and Hiroko Arikawa argued that colder climates are difficult to live in, such that evolution favors higher IQ in those areas. © 2011 Scientific American,
Related chapters from BN: Chapter 1: Introduction: Scope and Outlook; Chapter 7: Life-Span Development of the Brain and Behavior
Related chapters from MM:Chapter 20: ; Chapter 4: Development of the Brain
Link ID: 15776 - Posted: 09.08.2011
PERTH, Australia — Dolphins in one western Australian population have been observed holding a large conch shell in their beaks and using it to shake a fish into their mouths — and the behavior may be spreading. Researchers from Murdoch University in Perth were not quite sure what they were seeing when they first photographed the activity, in 2007, in which dolphins would shake conch shells at the surface of the ocean. "It's a fleeting glimpse — you look at it and think, that's kind of weird," said Simon Allen, a researcher at the university's Cetacean Research Unit. "Maybe they're playing, maybe they're socializing, maybe males are presenting a gift to a female or something like that, maybe the animals are actually eating the animal inside," he added. But researchers were more intrigued when they studied the photos and found the back of a fish hanging out of the shell, realizing that the shaking drained the water out of the shells and caused the fish that was sheltering inside to fall into the dolphins' mouths. A search through records for dolphins in the eastern part of Shark Bay, a population that has been studied for nearly 30 years, found roughly half a dozen sightings of similar behavior over some two decades. Copyright 2011 Thomson Reuters.
Related chapters from BN: Chapter 6: Evolution of the Brain and Behavior
Related chapters from MM:Chapter 0:
Link ID: 15744 - Posted: 08.30.2011
by Michael Marshall Anyone who has used an in-car satnav will be familiar with Jane, the calm voice that tells you to turn around because you've gone the wrong way. Many users will also be familiar with the response: yelling "Shut up, Jane!" while performing illegal turns. Bumblebees, it turns out, could give Jane a run for her money. Despite having a brain the size of a poppy seed, these insects can solve a fiendish navigational problem that modern supercomputers struggle to crack. Not so bumbling Bumblebees have been changing their name for centuries. From Shakespeare through to Darwin they were known as "humblebees", because of the humming sound they make. Then in the 20th century, for no good reason, they became "bumblebees". Like honeybees and ants they are social insects, with a queen who controls hordes of sterile workers. Among other ingenious behaviours, they keep their nests at a constant temperatureMovie Camera, avoid foraging close to homeMovie Camera for fear of leading predators to it, and become paranoid when camouflaged predators are aboutMovie Camera. Buff-tailed bumblebee workers fly from flower to flower in search of nectar and pollen. But each flight costs energy and time, so they need to minimise the distance they fly. To do that, they have to solve one of the hardest problems in mathematics: the travelling salesman problem. © Copyright Reed Business Information Ltd.
Related chapters from BN: Chapter 6: Evolution of the Brain and Behavior; Chapter 1: Introduction: Scope and Outlook
Related chapters from MM:Chapter 0: ; Chapter 20:
Link ID: 15697 - Posted: 08.20.2011
by David DeGusta and Jason E. Lewis Stephen Jay Gould claimed unconscious bias could affect even seemingly objective scientific measurements. Not so TRUTH is hard to come by, as personal lives and politics readily illustrate. Since science lays claim to providing some form of truth, it is bound to draw criticism on that count. Surprisingly, one of the sharpest attacks came from within, and from one of the giants, Harvard University's Stephen Jay Gould. Gould was a man of many parts - invertebrate palaeontologist, evolutionary theorist, historian of science, crusader against creationism and a prolific populariser of science with a slew of bestselling books. He was an iconic scientist of the late 20th century, a stature confirmed by that arbiter of cultural relevance, The Simpsons, in which he was a featured guest star in one episode. Even so, Gould harboured grave doubts about the ability of science to remain free from social pressures and bias. He made a series of statements in a 1978 Science paper that are startling given his role as a spokesperson for science: "...unconscious or dimly perceived finagling, doctoring, and massaging are rampant, endemic, and unavoidable in a profession [science] that awards status and power for clean and unambiguous discovery"; "unconscious manipulation of data may be a scientific norm"; "scientists are human beings rooted in cultural contexts, not automatons directed toward external truth". This was blasphemy from the pulpit. © Copyright Reed Business Information Ltd.
Related chapters from BN: Chapter 1: Introduction: Scope and Outlook
Related chapters from MM:Chapter 20:
Link ID: 15608 - Posted: 07.26.2011
By Stephanie Pappas Senior writer Parrots are capable of logical leaps, according to a new study in which a gray parrot named Awisa used reasoning to figure out where a bit of food was hidden. The task is one that kids as young as 4 could figure out, but the only other animals that have been shown to use this type of reasoning are great apes. That makes gray parrots the first non-primates to demonstrate such logical smarts, said study researcher Sandra Mikolasch, a doctoral candidate at the University of Vienna. "We now know that a gray parrot is able to logically exclude a wrong possibility and instead choose the right one in order to get a reward, which is known as 'inference by exclusion,'" Mikolasch wrote in an email to LiveScience. Parrots are no birdbrains. One famous gray parrot, Alex, even understood the concept of "zero," something children don't grasp until they are 3 or 4. Alex, who died in 2007, had a vocabulary of 150 words, which he seemed to use in two-way communication with the researchers who worked with him. Other animals have also revealed high levels of intelligence. Elephants, for example, know when and how to cooperate. And hyenas are even better than primates at cooperation. Earlier studies had shown that about one out of five chimps and other great apes could use logical reasoning to find hidden food. © 2011 msnbc.com
Related chapters from BN: Chapter 1: Introduction: Scope and Outlook; Chapter 6: Evolution of the Brain and Behavior
Related chapters from MM:Chapter 20:
Link ID: 15478 - Posted: 06.23.2011
Sandrine Ceurstemont, video producer How does an octopus locate a hidden meal? In this video, filmed by Michael Kuba and his team at the Hebrew University of Jerusalem, food is placed in one compartment of a maze denoted with a visual cue. The octopus picks the right route and successfully retrieves the treat. It's the first time that an octopus has been shown to guide one of its arms to a location, based on sensory input, using a complex movement. In the wild, octopuses use their arms to search for food in small crevices. Previously, it's been thought that they feel their way to a food source by simply using sensors on their tentacles. Now this research is showing that they are capable of more complex processing, in this case by combining information from their tentacles with visual input to achieve a goal. Six out of the seven octopuses tested successfully learned the task and used the strategy more often once it was mastered. It's only one example of clever tricks used by cephalopods. Check out our full-length feature to find out more about these animals' astounding mental skills. © Copyright Reed Business Information Ltd.
Related chapters from BN: Chapter 1: Introduction: Scope and Outlook; Chapter 6: Evolution of the Brain and Behavior
Related chapters from MM:Chapter 20:
Link ID: 15442 - Posted: 06.16.2011
By Daniel Bates The key to being intelligent could be a thick ‘insulation’ on the brain’s wires, scientists have discovered. A fatty layer covering the neural wires helps brain signals travel faster and makes the brain work more quickly. Just as a thick coating on an electrical wire stops current leaking out, a good layer of insulation helps the brain’s ‘circuits’ function more efficiently. A magnified portion of the brain created using diffusion imaging. The bright red areas show the thick fibre tract - the corpus callosum - which transfers information between the left and right sides of the brain A magnified portion of the brain created using diffusion imaging. The bright red areas show the thick fibre tract - the corpus callosum - which transfers information between the left and right sides of the brain The research is among the first to link ‘neural architecture’ to the health of individuals. It also suggests that this characteristic is something we are born with, indicating that intelligence is something we inherit. The researchers from the University of California in Los Angeles studied images of brain scans from 92 sets of identical twins to determine the amount of myelin - a fatty layer - around the brain’s neural wires. © Associated Newspapers Ltd
Related chapters from BN: Chapter 1: Introduction: Scope and Outlook; Chapter 2: Functional Neuroanatomy: The Cells and Structure of the Nervous System
Related chapters from MM:Chapter 20: ; Chapter 1: Cells and Structures: The Anatomy of the Nervous System
Link ID: 15323 - Posted: 05.14.2011
By Jennifer Viegas The brainier a bird is, the better its chances are of thriving in a city, according to a new study that found many big-brained birds can succeed in urban environments. "Big" in this case refers to brain size relative to body size. In other words, the larger the ratio of brain to body, the more likely the bird will thrive in an urban environment. "Species with relatively larger brains tend to have broader diets, live in diverse habitats and have a higher propensity for behavioral innovations in foraging," lead author Alexei Maklakov told Discovery News. "They are better able to establish viable populations when introduced to new habitats by humans." Maklakov, a researcher in the Department of Animal Ecology at Uppsala University, and his colleagues studied how well -- or not -- 82 species of passerine birds belonging to 22 avian families did in and around a dozen cities in France and Switzerland. Bird species that were able to breed in city centers were considered successful colonizers. Birds that bred around the cities, but not in the urban regions themselves, were considered to be urban avoiders. For the study, which is published in the latest issue of Royal Society Biology Letters, the scientists also looked at the brain size and body mass of each bird. The researchers determined that the following are brainy birds that do well in cities: the great tit, the blue tit, the carrion crow, the jackdaw, the magpie, the nuthatch, the wren, the long-tailed tit and more. Pigeons are not passerines, so these ubiquitous urban dwellers were not included in the study. © 2011 Discovery Communications, LLC.
Related chapters from BN: Chapter 6: Evolution of the Brain and Behavior; Chapter 1: Introduction: Scope and Outlook
Related chapters from MM:Chapter 0: ; Chapter 20:
Link ID: 15271 - Posted: 04.28.2011
by Michael Balter Kids who score higher on IQ tests will, on average, go on to do better in conventional measures of success in life: academic achievement, economic success, even greater health, and longevity. Is that because they are more intelligent? Not necessarily. New research concludes that IQ scores are partly a measure of how motivated a child is to do well on the test. And harnessing that motivation might be as important to later success as so-called native intelligence. Researchers have long debated what IQ tests actually measure, and whether average differences in IQ scores--such as those between different ethnic groups--reflect differences in intelligence, social and economic factors, or both. The debate moved heavily into the public arena with the 1994 publication of The Bell Curve by Richard Herrnstein and Charles Murray, which suggested that the lower average IQ scores of some ethnic groups, such as African-Americans and Hispanics, were due in large part to genetic differences between them and Caucasian groups. That view has been challenged by many scientists. For example, in his 2009 book "Intelligence and How to Get It," Richard Nisbett, a psychologist at the University of Michigan, Ann Arbor, argued that differences in IQ scores largely disappear when researchers control for social and economic factors. New work, led by Angela Lee Duckworth, a psychologist at the University of Pennsylvania, and reported online today in the Proceedings of the National Academy of Sciences explores the effect of motivation on how well people perform on IQ tests. While subjects taking such tests are usually instructed to try as hard as they can, previous research has shown that not everyone makes the maximum effort. A number of studies have found that subjects who are promised monetary rewards for doing well on IQ and other cognitive tests score significantly higher. © 2010 American Association for the Advancement of Science.
Related chapters from BN: Chapter 1: Introduction: Scope and Outlook; Chapter 15: Emotions, Aggression, and Stress
Related chapters from MM:Chapter 20: ; Chapter 11: Emotions, Aggression, and Stress
Link ID: 15268 - Posted: 04.26.2011