Links for Keyword: Consciousness

Follow us on Facebook or subscribe to our mailing list, to receive news updates. Learn more.


Links 21 - 40 of 300

Tim Adams For centuries, philosophers have theorised about the mind-body question, debating the relationship between the physical matter of the brain and the conscious mental activity it somehow creates. Even with advances in neuroscience and brain imaging techniques, large parts of that fundamental relationship remain stubbornly mysterious. It was with good reason that, in 1995, the cognitive scientist David Chalmers coined the term “the hard problem” to describe the question of exactly how our brains conjure subjective conscious experience. Some philosophers continue to insist that mind is inherently distinct from matter. Advances in understanding how the brain functions undermine those ideas of dualism, however. Anil Seth, professor of cognitive and computational neuroscience at the University of Sussex, is at the leading edge of that latter research. His Ted talk on consciousness has been viewed more than 11m times. His new book, Being You, proposes an idea of the human mind as a “highly evolved prediction machine”, rooted in the functions of the body and “constantly hallucinating the world and the self” to create reality. One of the things that I liked about your approach in the book was the way that many of the phenomena you investigate arise out of your experience. For example, the feeling of returning to consciousness after anaesthesia or how your mother, experiencing delirium, was no longer recognisably herself. Do you think it’s always important to keep that real-world framework in mind? The reason I’m interested in consciousness is intrinsically personal. I want to understand myself and, by extension, others. But I’m also super-interested for example in developing statistical models and mathematical methods for characterising things such as emergence [behaviour of the mind as a whole that exceeds the capability of its individual parts] and there is no personal component in that. © 2021 Guardian News & Media Limited

Related chapters from BN: Chapter 18: Attention and Higher Cognition
Related chapters from MM:Chapter 14: Attention and Higher Cognition
Link ID: 27962 - Posted: 08.25.2021

By John Horgan In my 20s, I had a friend who was brilliant, charming, Ivy-educated and rich, heir to a family fortune. I’ll call him Gallagher. He could do anything he wanted. He experimented, dabbling in neuroscience, law, philosophy and other fields. But he was so critical, so picky, that he never settled on a career. Nothing was good enough for him. He never found love for the same reason. He also disparaged his friends’ choices, so much so that he alienated us. He ended up bitter and alone. At least that’s my guess. I haven’t spoken to Gallagher in decades. There is such a thing as being too picky, especially when it comes to things like work, love and nourishment (even the pickiest eater has to eat something). That’s the lesson I gleaned from Gallagher. But when it comes to answers to big mysteries, most of us aren’t picky enough. We settle on answers for bad reasons, for example, because our parents, priests or professors believe it. We think we need to believe something, but actually we don’t. We can, and should, decide that no answers are good enough. We should be agnostics. Some people confuse agnosticism (not knowing) with apathy (not caring). Take Francis Collins, a geneticist who directs the National Institutes of Health. He is a devout Christian, who believes that Jesus performed miracles, died for our sins and rose from the dead. In his 2006 bestseller The Language of God, Collins calls agnosticism a “cop-out.” When I interviewed him, I told him I am an agnostic and objected to “cop-out.” © 2021 Scientific American

Related chapters from BN: Chapter 18: Attention and Higher Cognition
Related chapters from MM:Chapter 14: Attention and Higher Cognition
Link ID: 27952 - Posted: 08.18.2021

By Christof Koch Consider the following experiences: • You're headed toward a storm that's a couple of miles away, and you've got to get across a hill. You ask yourself: “How am I going to get over that, through that?” • You see little white dots on a black background, as if looking up at the stars at night. Advertisement • You look down at yourself lying in bed from above but see only your legs and lower trunk. These may seem like idiosyncratic events drawn from the vast universe of perceptions, sensations, memories, thoughts and dreams that make up our daily stream of consciousness. In fact, each one was evoked by directly stimulating the brain with an electrode. As American poet Walt Whitman intuited in his poem “I Sing the Body Electric,” these anecdotes illustrate the intimate relationship between the body and its animating soul. The brain and the conscious mind are as inexorably linked as the two sides of a coin. Recent clinical studies have uncovered some of the laws and regularities of conscious activity, findings that have occasionally proved to be paradoxical. They show that brain areas involved in conscious perception have little to do with thinking, planning and other higher cognitive functions. Neuroengineers are now working to turn these insights into technologies to replace lost cognitive function and, in the more distant future, to enhance sensory, cognitive or memory capacities. For example, a recent brain-machine interface provides completely blind people with limited abilities to perceive light. These tools, however, also reveal the difficulties of fully restoring sight or hearing. They underline even more the snags that stand in the way of sci-fi-like enhancements that would enable access to the brain as if it were a computer storage drive. © 2021 Scientific American,

Related chapters from BN: Chapter 18: Attention and Higher Cognition; Chapter 3: Neurophysiology: The Generation, Transmission, and Integration of Neural Signals
Related chapters from MM:Chapter 14: Attention and Higher Cognition; Chapter 3: The Chemistry of Behavior: Neurotransmitters and Neuropharmacology
Link ID: 27865 - Posted: 06.19.2021

Johnjoe McFadden Some 2,700 years ago in the ancient city of Sam’al, in what is now modern Turkey, an elderly servant of the king sits in a corner of his house and contemplates the nature of his soul. His name is Katumuwa. He stares at a basalt stele made for him, featuring his own graven portrait together with an inscription in ancient Aramaic. It instructs his family, when he dies, to celebrate ‘a feast at this chamber: a bull for Hadad harpatalli and a ram for Nik-arawas of the hunters and a ram for Shamash, and a ram for Hadad of the vineyards, and a ram for Kubaba, and a ram for my soul that is in this stele.’ Katumuwa believed that he had built a durable stone receptacle for his soul after death. This stele might be one of the earliest written records of dualism: the belief that our conscious mind is located in an immaterial soul or spirit, distinct from the matter of the body. More than 2 millennia later, I was also contemplating the nature of the soul, as my son lay propped up on a hospital gurney. He was undertaking an electroencephalogram (EEG), a test that detects electrical activity in the brain, for a condition that fortunately turned out to be benign. As I watched the irregular wavy lines march across the screen, with spikes provoked by his perceptions of events such as the banging of a door, I wondered at the nature of the consciousness that generated those signals. Just how do the atoms and molecules that make up the neurons in our brain – not so different to the bits of matter in Katumwa’s inert stele or the steel barriers on my son’s hospital bed – manage to generate human awareness and the power of thought? In answering that longstanding question, most neurobiologists today would point to the information-processing performed by brain neurons. For both Katumuwa and my son, this would begin as soon as light and sound reached their eyes and ears, stimulating their neurons to fire in response to different aspects of their environment. For Katumuwa, perhaps, this might have been the pinecone or comb that his likeness was holding on the stele; for my son, the beeps from the machine or the movement of the clock on the wall. © Aeon Media Group Ltd. 2012-2021

Related chapters from BN: Chapter 18: Attention and Higher Cognition
Related chapters from MM:Chapter 14: Attention and Higher Cognition
Link ID: 27782 - Posted: 04.21.2021

By Thomas Nail What are you thinking about right now? Have you ever wondered why it's so hard to answer this simple question when someone asks? There is a reason. 95 percent of your brain's activity is entirely unconscious. Of the remaining 5 percent of brain activity, only around half is intentionally directed. The vast majority of what goes on in our heads is unknown and unintentional. Neuroscientists call these activities "spontaneous fluctuations," because they are unpredictable and seemingly unconnected to any specific behavior. No wonder it's so hard to say what we are thinking or feeling and why. We like to think of ourselves as CEOs of our own minds, but we are much more like ships tossed at sea. What does this reveal about the nature of consciousness? Why is our brain, a mere 2 percent of our body mass, using 20 percent of our energy to produce what many scientists still call "background noise?" Neuroscientists have known about these "random" fluctuations in electrical brain activity since the 1930s, but have not known what to make of them until relatively recently. Many brain studies of consciousness still look only at brain activity that responds to external stimuli and triggers a mental state. The rest of the "noise" is "averaged out" of the data. This is still the prevailing approach in most contemporary neuroscience, and yields a "computational" input-output model of consciousness. In this neuroscientific model, so-called "information" transfers from our senses to our brains. Yet the pioneering French neuroscientist Stanislas Dehaene considers this view "deeply wrong." "Spontaneous activity is one of the most frequently overlooked features" of consciousness, he writes. Unlike engineers who design digital transistors with discrete voltages for 0s and 1s to resist background noise, neurons in the brain work differently.

Related chapters from BN: Chapter 18: Attention and Higher Cognition
Related chapters from MM:Chapter 14: Attention and Higher Cognition
Link ID: 27702 - Posted: 02.23.2021

Anil K Seth What is the best way to understand consciousness? In philosophy, centuries-old debates continue to rage over whether the Universe is divided, following René Descartes, into ‘mind stuff’ and ‘matter stuff’. But the rise of modern neuroscience has seen a more pragmatic approach gain ground: an approach that is guided by philosophy but doesn’t rely on philosophical research to provide the answers. Its key is to recognise that explaining why consciousness exists at all is not necessary in order to make progress in revealing its material basis – to start building explanatory bridges from the subjective and phenomenal to the objective and measurable. In my work at the Sackler Centre for Consciousness Science at the University of Sussex in Brighton, I collaborate with cognitive scientists, neuroscientists, psychiatrists, brain imagers, virtual reality wizards and mathematicians – and philosophers too – trying to do just this. And together with other laboratories, we are gaining exciting new insights into consciousness – insights that are making real differences in medicine, and that in turn raise new intellectual and ethical challenges. In my own research, a new picture is taking shape in which conscious experience is seen as deeply grounded in how brains and bodies work together to maintain physiological integrity – to stay alive. In this story, we are conscious ‘beast-machines’, and I hope to show you why. Let’s begin with David Chalmers’s influential distinction, inherited from Descartes, between the ‘easy problem’ and the ‘hard problem’. The ‘easy problem’ is to understand how the brain (and body) gives rise to perception, cognition, learning and behaviour. The ‘hard’ problem is to understand why and how any of this should be associated with consciousness at all: why aren’t we just robots, or philosophical zombies, without any inner universe? It’s tempting to think that solving the easy problem (whatever this might mean) would get us nowhere in solving the hard problem, leaving the brain basis of consciousness a total mystery. © Aeon Media Group Ltd. 2012-2020.

Related chapters from BN: Chapter 18: Attention and Higher Cognition
Related chapters from MM:Chapter 14: Attention and Higher Cognition
Link ID: 27610 - Posted: 12.07.2020

by Josh Wilbur Jake Haendel was a hard-partying chef from a sleepy region of Massachusetts. When he was 28, his heroin addiction resulted in catastrophic brain damage and very nearly killed him. In a matter of months, Jake’s existence became reduced to a voice in his head. Jake’s parents had divorced when he was young. He grew up between their two homes in a couple of small towns just beyond reach of Boston, little more than strip malls, ailing churches and half-empty sports bars. His mother died of breast cancer when he was 19. By then, he had already been selling marijuana and abusing OxyContin, an opioid, for years. “Like a lot of kids at my school, I fell in love with oxy. If I was out to dinner with my family at a restaurant, I would go to the bathroom just to get a fix,” he said. He started culinary school, where he continued to experiment with opioids and cocaine. He hid his drug use from family and friends behind a sociable, fun-loving front. Inside, he felt anxious and empty. “I numbed myself with partying,” he said. After culinary school, he took a job as a chef at a local country club. At 25, Jake tried heroin for the first time, with a co-worker (narcotics are notoriously prevalent in American kitchens). By the summer of 2013, Jake was struggling to find prescription opioids. For months, he had been fending off the symptoms of opioid withdrawal, which he likened to “a severe case of the flu with an added feeling of impending doom”. Heroin offered a euphoric high, staving off the intense nausea and shaking chills of withdrawal. Despite his worsening addiction, Jake married his girlfriend, Ellen, in late 2016. Early in their relationship, Ellen had asked him if he was using heroin. He had lied without hesitation, but she soon found out the truth, and within months, the marriage was falling apart. “I was out of control, selling lots of heroin, using even more, spending a ridiculous amount of money on drugs and alcohol,” he said. In May 2017, Ellen noticed that he was talking funnily, his words slurred and off-pitch. “What’s up with your voice?” she asked him repeatedly.

Related chapters from BN: Chapter 18: Attention and Higher Cognition; Chapter 4: The Chemistry of Behavior: Neurotransmitters and Neuropharmacology
Related chapters from MM:Chapter 14: Attention and Higher Cognition
Link ID: 27595 - Posted: 11.27.2020

Joel Frohlich Three years ago, I asked, “What the heck is a claustrum?” In that post, I described the mystery of this oddly shaped brain region, located just below the cerebral cortex. Because the claustrum is vanishingly thin in its cross section (think of a pancake shaped like North America), very few patients or lab animals have experienced lesions that specifically destroy the claustrum. For this reason, it’s difficult to pin down what happens when just this brain region (and not others) goes offline. But given its wealth of connections to other brain areas, neuroscientist Christof Koch speculated in 2017 that “the claustrum could be coordinating inputs and outputs across the brain to create consciousness.” This idea is supported by a report of a woman with epilepsy who lost consciousness after her claustrum was electrically stimulated, and perhaps also by the consciousness-transforming effects of Salvinorin A, a drug that binds to receptors that are abundant in the claustrum and alters body image. Could the claustrum, an enigma of the brain, also be the key to the conscious mind? Well, now we have the answer. Using a genetic engineering technique called optogenetics that enables neurons to fire impulses in response to blue light, a team at the RIKEN Brain Science Institute in Japan has discovered what the heck the claustrum actually does. During deep sleep when you’re not dreaming, your cerebral cortex shows slow waves of electrical activity. These waves are very synchronous, meaning they reflect the coordinated activity of many neurons, more so than the smaller, faster waves that are generally present when you are either awake or dreaming. How does the brain coordinate the activity of so many neurons? It turns out that the claustrum plays a key role. © 2020 Sussex Publishers, LLC

Related chapters from BN: Chapter 18: Attention and Higher Cognition
Related chapters from MM:Chapter 14: Attention and Higher Cognition
Link ID: 27579 - Posted: 11.14.2020

Sara Reardon In Alysson Muotri’s laboratory, hundreds of miniature human brains, the size of sesame seeds, float in Petri dishes, sparking with electrical activity. These tiny structures, known as brain organoids, are grown from human stem cells and have become a familiar fixture in many labs that study the properties of the brain. Muotri, a neuroscientist at the University of California, San Diego (UCSD), has found some unusual ways to deploy his. He has connected organoids to walking robots, modified their genomes with Neanderthal genes, launched them into orbit aboard the International Space Station, and used them as models to develop more human-like artificial-intelligence systems. Like many scientists, Muotri has temporarily pivoted to studying COVID-19, using brain organoids to test how drugs perform against the SARS-CoV-2 coronavirus. But one experiment has drawn more scrutiny than the others. In August 2019, Muotri’s group published a paper in Cell Stem Cell reporting the creation of human brain organoids that produced coordinated waves of activity, resembling those seen in premature babies1. The waves continued for months before the team shut the experiment down. This type of brain-wide, coordinated electrical activity is one of the properties of a conscious brain. The team’s finding led ethicists and scientists to raise a host of moral and philosophical questions about whether organoids should be allowed to reach this level of advanced development, whether ‘conscious’ organoids might be entitled to special treatment and rights not afforded to other clumps of cells and the possibility that consciousness could be created from scratch. The idea of bodiless, self-aware brains was already on the minds of many neuroscientists and bioethicists. Just a few months earlier, a team at Yale University in New Haven, Connecticut, announced that it had at least partially restored life to the brains of pigs that had been killed hours earlier. By removing the brains from the pigs’ skulls and infusing them with a chemical cocktail, the researchers revived the neurons’ cellular functions and their ability to transmit electrical signals2.

Related chapters from BN: Chapter 18: Attention and Higher Cognition; Chapter 7: Life-Span Development of the Brain and Behavior
Related chapters from MM:Chapter 14: Attention and Higher Cognition; Chapter 4: Development of the Brain
Link ID: 27552 - Posted: 10.28.2020

Adrian Owen DR. ADRIAN OWEN: Imagine this scenario. You've unfortunately had a terrible accident. You're lying in a hospital bed and you're aware—you're aware but you're unable to respond, but the doctors and your relatives don't know that. You have to lie there, listening to them deciding whether to let you live or die. I can think of nothing more terrifying. Communication is at the very heart of what makes us human. It's the basis of everything. What we're doing is we're returning the ability to communicate to some patients who seem to have lost that forever. The vegetative state is often referred to as a state of wakefulness without awareness. Patients open their eyes, they'll just gaze around the room. They'll have sleeping and waking cycles, but they never show any evidence of having any awareness. So, typically, the way that we assess consciousness is through command following. We ask somebody to do something, say, squeeze our hand, and if they do it, you know that they're conscious. The problem in the vegetative state is that these patients by definition can produce no movements. And the question I asked is, well, could somebody command follow with their brain? It was that idea that pushed us into a new realm of understanding this patient population. When a part of your brain is involved in generating a thought or performing an action, it burns energy in the form of glucose, and it's replenished through blood flow. As blood flows to that part of the brain, we're able to see that with the FMRI scanner. I think one of the key insights was the realization that we could simply get somebody to lie in the scanner and imagine something and, based on the pattern of brain activity, we will be able to work out what it is they were thinking. We had to find something that produces really a quite distinct pattern of activity that was more or less the same for everybody. So, we came up with two tasks. One task, imagine playing tennis, produces activity in the premotor cortex in almost every healthy person we tried this in. A different task, thinking about moving from room to room in your house, produces an entirely different pattern of brain activity; particularly, it involves a part of the brain known as the parahippocampal gyrus. And again, it's very consistent across different people.

Related chapters from BN: Chapter 18: Attention and Higher Cognition; Chapter 2: Functional Neuroanatomy: The Cells and Structure of the Nervous System
Related chapters from MM:Chapter 14: Attention and Higher Cognition; Chapter 2: Neurophysiology: The Generation, Transmission, and Integration of Neural Signals
Link ID: 27513 - Posted: 10.07.2020

By John Horgan I interviewed psychologist Susan Blackmore 20 years ago while doing research for my book Rational Mysticism. Here, lightly edited, is my description of her: “Her hair was dyed orange, red, and yellow, dark-rooted, cut short as a boy’s, with sideburns plunging like daggers past each multi-ringed ear. Words spewed from her pell-mell, accompanied by equally vigorous hand signals and facial expressions. She was keen on onomatopoeic sound effects: Ahhhhh (to express her pleasure at finding other smart people when she entered Oxford); DUN da la DUN da la DUN (the galloping noise she heard as she sped down a tree-lined tunnel in her first out-of-body experience); Zzzzzzt (the sound of reality dissolving after her second toke of the psychedelic dimethyltryptamine). We were talking in the dining room of the inn where she was staying, and twice we had to move to a quieter spot when employees or patrons of the inn started talking near us. One side effect of her spiritual practice, she explained, is that she has a hard time ignoring stimuli. ‘I think it is one of the bad effects of practicing mindfulness. I'm so aware of everything all the time.’” Blackmore began her career as a parapsychologist, intent on finding evidence for astral projection and extrasensory perception. Her investigations transformed her into a materialist and Darwinian (one of her best-known books describes humans as “meme machines”) who doesn’t believe in ESP, God or free will. And yet she is a mystic, too, who explores consciousness via meditation and psychedelics. In other words, Blackmore pulls off the trick of being both a hard-nosed skeptic and an open-minded adventurer. What more can one ask of a mind scientist? Curious about how her thinking has evolved in our mind-boggling era, I e-mailed her a few questions. An edited transcript of the interview follows. © 2020 Scientific American

Related chapters from BN: Chapter 18: Attention and Higher Cognition; Chapter 4: The Chemistry of Behavior: Neurotransmitters and Neuropharmacology
Related chapters from MM:Chapter 14: Attention and Higher Cognition
Link ID: 27475 - Posted: 09.16.2020

By John Horgan It is a central dilemma of human life—more urgent, arguably, than the inevitability of suffering and death. I have been brooding and ranting to my students about it for years. It surely troubles us more than ever during this plague-ridden era. Philosophers call it the problem of other minds. I prefer to call it the solipsism problem. Solipsism, technically, is an extreme form of skepticism, at once utterly nuts and irrefutable. It holds that you are the only conscious being in existence. The cosmos sprang into existence when you became sentient, and it will vanish when you die. As crazy as this proposition seems, it rests on a brute fact: each of us is sealed in an impermeable prison cell of subjective awareness. Even our most intimate exchanges might as well be carried out via Zoom. You experience your own mind every waking second, but you can only infer the existence of other minds through indirect means. Other people seem to possess conscious perceptions, emotions, memories, intentions, just as you do, but you can’t be sure they do. You can guess how the world looks to me, based on my behavior and utterances, including these words you are reading, but you have no first-hand access to my inner life. For all you know, I might be a mindless bot. Natural selection instilled in us the capacity for a so-called theory of mind—a talent for intuiting others’ emotions and intentions. But we have a countertendency to deceive each other, and to fear we are being deceived. The ultimate deception would be pretending you’re conscious when you’re not. The solipsism problem thwarts efforts to explain consciousness. Scientists and philosophers have proposed countless contradictory hypotheses about what consciousness is and how it arises. Panpsychists contend that all creatures and even inanimate matter—even a single proton!—possess consciousness. Hard-core materialists insist, conversely (and perversely), that not even humans are all that conscious. © 2020 Scientific American

Related chapters from BN: Chapter 18: Attention and Higher Cognition
Related chapters from MM:Chapter 14: Attention and Higher Cognition
Link ID: 27468 - Posted: 09.12.2020

By Laura Sanders When your brain stops working — completely and irreversibly — you’re dead. But drawing the line between life and brain death isn’t always easy. A new report attempts to clarify that distinction, perhaps helping to ease the anguish of family members with a loved one whose brain has died but whose heart still beats. Brain death has been a recognized concept in medicine for decades. But there’s a lot of variation in how people define it, says Gene Sung, a neurocritical care physician at the University of Southern California in Los Angeles. “Showing that there is some worldwide consensus, understanding and agreement at this time will hopefully help minimize misunderstanding of what brain death is,” Sung says. As part of the World Brain Death Project, Sung and his colleagues convened doctors from professional societies around the world to forge a consensus on how to identify brain death. This group, including experts in critical care, neurology and neurosurgery, reviewed the existing research on brain death (which was slim) and used their clinical expertise to write the recommendations, published August 3 in JAMA. In addition to the main guidelines, the final product included 17 supplements that address legal and religious aspects, provide checklists and flowcharts, and even trace the history of relevant medical advances. “Basically, we wrote a book,” Sung says. © Society for Science & the Public 2000–2020.

Related chapters from BN: Chapter 18: Attention and Higher Cognition; Chapter 19: Language and Lateralization
Related chapters from MM:Chapter 14: Attention and Higher Cognition; Chapter 15: Language and Lateralization
Link ID: 27413 - Posted: 08.11.2020

Burcin Ikiz About five years ago, researchers from the Allen Institute for Brain Science in Seattle received a special donation: a piece of a live, rare brain tissue. It came from a very deep part of the brain neuroscientists usually can’t access. The donated tissue contained a rare and mysterious type of brain cells called von Economo neurons (VENs) that are thought to be linked to social intelligence and several neurological diseases. The tissue was a byproduct of a surgery to remove a brain tumor from a patient in her 60s. The location of the tissue turned out to be in one of the deepest layers of the frontoinsular cortex, which is one of the few places where these rare neurons are found in the human brain. “This was one of the extremely rare chances that we received this tissue from a donor that had a tumor being removed from quite a deep [brain] structure,” said Rebecca Hodge, who is the co-first author of the study, published in Nature Communications on March 3rd. Hodge and her colleagues became the first scientists to record electrical spikes from these neurons. Further studies they did on these cells gave them clues about the VENs’ identity and function in the human brain. VENs are large, spindle-shaped neurons. They were first identified by the Ukrainian scientist Vladimir Betz more than a century ago. They were later named after the anatomist Constantin von Economo, who described their shape and distribution through the human cortex. Only humans and especially social animals with large brains, such as great apes, whales, dolphins, and elephants have VENs. It is hypothesized that the cells evolved independently in these animals. Since common lab animals with smaller brains, like mice and rats, don’t have VENs, it is difficult to study them in a lab environment. © 2017 – 2019 Massive Science Inc.

Related chapters from BN: Chapter 18: Attention and Higher Cognition
Related chapters from MM:Chapter 14: Attention and Higher Cognition
Link ID: 27291 - Posted: 06.08.2020

Brenda Patoine Can the key to consciousness be found in the folds of the cerebrum? Can the simple unfettered state of “being conscious” be localized in the brain, its properties deconstructed to precisely timed patterns of neural firing? Finding the answers is the goal of a $20 million international research program to search for the neural footprints of consciousness. The broad, multi-year initiative—termed Accelerating Research in Consciousness (ARC)—is being funded by the Templeton World Charity Foundation. In the first phase, representing $5 million, two leading brain theories of consciousness with diametrically opposed assumptions will face off to test their hypotheses. ARC pits the Integrated Information Theory (IIT) and the Global Neuronal Workplace (GNW) theory directly against one another, in what Templeton calls “adversarial collaboration,” to settle some fundamental questions about how, when, and where the brain processes subjective awareness of ourselves and the world around us. The two theoretical models are in stark contrast to one another: their definitions and assumptions of what constitutes consciousness differ and their whole approach to the subject is fundamentally different. What they have in common is that they both study the neural correlates of consciousness. IIT is the brainchild of Giulio Tononi, a professor and director of the Wisconsin Institute for Sleep and Consciousness at the University of Wisconsin. GNW has been elaborated by Stanislas Dehaene of INSERM/Unicog, in concert with Lionel Naccache of Sorbonne/INSERM, Jean-Pierre Changeux of Institut Pasteur, and others. These two theories were selected by Christof Koch, a leading consciousness researcher who is serving as an advisor to the Templeton project, because each has an established following among scientists and a “preponderance of evidence” backing them, says Koch, who now heads the Allen Institute for Brain Science. © 2020 The Dana Foundation.

Related chapters from BN: Chapter 18: Attention and Higher Cognition
Related chapters from MM:Chapter 14: Attention and Higher Cognition
Link ID: 27201 - Posted: 04.16.2020

By Scott Barry Kaufman Who are you and how did you become interested in free will? I am an Assistant Professor of Philosophy at Iona College where I also serve as a faculty member for the Iona Neuroscience program. I have previously worked in the Scientific and Philosophical Studies of Mind program at Franklin and Marshall College as well as previous appointments as a Lecturer at King’s College London and University of Alabama. My recent and forthcoming publications focus on issues of autonomy in terms of philosophical accounts of free will as well as how it intersects with neuroscience and psychiatry. One of the main questions I investigate is what neuroscience can tell us about meaningful agency (see here for my recent review of the topic as part of an extended review of research on agency, freedom, and responsibility for the John Templeton Foundation). I became interested in free will via an interdisciplinary route. As an undergraduate at Grinnell College, I majored in psychology with a strong emphasis on experimental psychology and clinical psychology. During my senior year at Grinnell I realized that I was fascinated by the theoretical issues operating in the background of the psychological studies that we read and conducted, especially issues of how the mind is related to the brain, prospects for the scientific study of consciousness, and how humans as agents fit into a natural picture of the world. So I followed these interests to the study of philosophy of psychology and eventually found my way to the perfect fusion of these topics: the neuroscience of free will. What is free will? Free will seems to be a familiar feature of our everyday lives — most of us believe that (at least at times) what we do is up to us to some extent. For instance, that I freely decided to take my job or that I am acting freely when I decide to go for a run this afternoon. Free will is not just that I move about in the world to achieve a goal, but that I exercise meaningful control over what I decide to do. My decisions and actions are up to me in the sense that they are mine — a product of my values, desires, beliefs, and intentions. I decided to take this job because I valued the institution’s mission or I believed that this job would be enriching or a good fit for me. Correspondingly, it seems to me that at least at times I could have decided to and done something else than what I did. I decided to go for a run this afternoon, but no one made me and I wasn’t subject to any compulsion; I could have gone for a coffee instead, at least it seems to me. Philosophers take these starting points and work to construct plausible accounts of free will. Broadly speaking, there is a lot of disagreement as to the right view of free will, but most philosophers believe that a person has free will if they have the ability to act freely, and that this kind of control is linked to whether it would be appropriate to hold that person responsible (e.g., blame or praise them) for what they do. For instance, we don’t typically hold people responsible for what they do if they were acting under severe threat or inner compulsion. © 2020 Scientific American

Related chapters from BN: Chapter 18: Attention and Higher Cognition
Related chapters from MM:Chapter 14: Attention and Higher Cognition
Link ID: 27128 - Posted: 03.17.2020

By Laura Sanders SEATTLE — Live bits of brain look like any other piece of meat — pinkish, solid chunks of neural tissue. But unlike other kinds of tissue or organs donated for research, they hold the memories, thoughts and feelings of a person. “It is identified with who we are,” Karen Rommelfanger, a neuroethicist at Emory University in Atlanta, said February 13 in a news conference at the annual meeting of the American Association for the Advancement of Science. That uniqueness raises a whole new set of ethical quandaries when it comes to experimenting with living brain tissue, she explained. Such donations are crucial to emerging research aimed at teasing out answers to what makes us human. For instance, researchers at the Seattle-based Allen Institute for Brain Science conduct experiments on live brain tissue to get clues about how the cells in the human brain operate (SN: 8/7/19). These precious samples, normally discarded as medical waste, are donated by patients undergoing brain surgery and raced to the lab while the nerve cells are still viable. Other experiments rely on systems that are less sophisticated than a human brain, such as brain tissue from other animals and organoids. These clumps of neural tissue, grown from human stem cells, are still a long way from mimicking the complexities of the human brain (SN: 10/24/19). But with major advances, these systems might one day be capable of much more advanced behavior, which might ultimately lead to awareness, a conundrum that raises ethical issues. © Society for Science & the Public 2000–2020

Related chapters from BN: Chapter 18: Attention and Higher Cognition; Chapter 15: Emotions, Aggression, and Stress
Related chapters from MM:Chapter 14: Attention and Higher Cognition; Chapter 11: Emotions, Aggression, and Stress
Link ID: 27047 - Posted: 02.18.2020

By Tam Hunt Strangely, modern science was long dominated by the idea that to be scientific means to remove consciousness from our explanations, in order to be “objective.” This was the rationale behind behaviorism, a now-dead theory of psychology that took this trend to a perverse extreme. Behaviorists like John Watson and B.F. Skinner scrupulously avoided any discussion of what their human or animal subjects thought, intended or wanted, and focused instead entirely on behavior. They thought that because thoughts in other peoples’ heads, or in animals, are impossible to know with certainty, we should simply ignore them in our theories. We can only be truly scientific, they asserted, if we focus solely on what can be directly observed and measured: behavior. Erwin Schrödinger, one of the key architects of quantum mechanics in the early part of the 20th century, labeled this approach in his philosophical 1958 book Mind and Matter, the “principle of objectivation” and expressed it clearly: Advertisement “By [the principle of objectivation] I mean … a certain simplification which we adopt in order to master the infinitely intricate problem of nature. Without being aware of it and without being rigorously systematic about it, we exclude the Subject of Cognizance from the domain of nature that we endeavor to understand. We step with our own person back into the part of an onlooker who does not belong to the world, which by this very procedure becomes an objective world.” Schrödinger did, however, identify both the problem and the solution. He recognized that “objectivation” is just a simplification that is a temporary step in the progress of science in understanding nature. © 2020 Scientific American

Related chapters from BN: Chapter 18: Attention and Higher Cognition
Related chapters from MM:Chapter 14: Attention and Higher Cognition
Link ID: 27044 - Posted: 02.18.2020

By Bernardo Kastrup At least since the Enlightenment, in the 18th century, one of the most central questions of human existence has been whether we have free will. In the late 20th century, some thought neuroscience had settled the question. However, as it has recently become clear, such was not the case. The elusive answer is nonetheless foundational to our moral codes, criminal justice system, religions and even to the very meaning of life itself—for if every event of life is merely the predictable outcome of mechanical laws, one may question the point of it all. But before we ask ourselves whether we have free will, we must understand what exactly we mean by it. A common and straightforward view is that, if our choices are predetermined, then we don’t have free will; otherwise we do. Yet, upon more careful reflection, this view proves surprisingly inappropriate. To see why, notice first that the prefix “pre” in “predetermined choice” is entirely redundant. Not only are all predetermined choices determined by definition, all determined choices can be regarded as predetermined as well: they always result from dispositions or necessities that precede them. Therefore, what we are really asking is simply whether our choices are determined. In this context, a free-willed choice would be an undetermined one. But what is an undetermined choice? It can only be a random one, for anything that isn’t fundamentally random reflects some underlying disposition or necessity that determines it. There is no semantic space between determinism and randomness that could accommodate choices that are neither. This is a simple but important point, for we often think—incoherently—of free-willed choices as neither determined nor random. © 2020 Scientific American

Related chapters from BN: Chapter 18: Attention and Higher Cognition
Related chapters from MM:Chapter 14: Attention and Higher Cognition
Link ID: 27024 - Posted: 02.07.2020

Jennifer Rankin in Brussels A pioneering Belgian neurologist has been awarded €1m to fund further work in helping diagnose the most severe brain injuries, as he seeks to battle “the silent epidemic” and help people written off as “vegetative” who, it is believed, will never recover. Steven Laureys, head of the coma science group at Liège University hospital, plans to use the £850,000 award – larger than the Nobel prize – to improve the diagnosis of coma survivors labelled as being in a “persistent vegetative state”. That is “a horrible term” he says, although still one widely used by the general public and many clinicians. Laureys, who has spent more than two decades exploring the boundaries of human consciousness, prefers the term “unresponsive wakefulness” to describe people who are unconscious but show signs of being awake, such as opening their eyes or moving. These patients are often wrongly described as being in a coma, a condition that only lasts a few weeks, in which people are completely unresponsive. “The old view was to consider consciousness, which was one of the biggest mysteries for science to solve, as all or nothing,” he told the Guardian, shortly after he was awarded the Generet prize by Belgium’s King Baudouin Foundation this week. He said that a third of patients he treats at the Liège coma centre had been wrongly diagnosed as being in a vegetative state, despite signs of consciousness. As a young doctor in the 1990s he was frustrated by the questions that torture the families of coma survivors: can their loved ones see or hear them? Can they feel anything, including pain? Laureys and his 30-strong team of engineers and clinicians have shown that some of those with a “vegetative state” diagnosis are minimally conscious, showing signs of awareness such as responding to commands with their eyes. © 2020 Guardian News & Media Limited

Related chapters from BN: Chapter 18: Attention and Higher Cognition
Related chapters from MM:Chapter 14: Attention and Higher Cognition
Link ID: 26970 - Posted: 01.20.2020