Most Recent Links

Follow us on Facebook or subscribe to our mailing list, to receive news updates. Learn more.


Links 6281 - 6300 of 29361

Jon Hamilton Impulsive children become thoughtful adults only after years of improvements to the brain's information highways, a team reports in Current Biology. A study of nearly 900 young people ages 8 to 22 found that the ability to control impulses, stay on task and make good decisions increased steadily over that span as the brain remodeled its information pathways to become more efficient. The finding helps explain why these abilities, known collectively as executive function, take so long to develop fully, says Danielle Bassett, an author of the study and an associate professor of bioengineering at the University of Pennsylvania. "A child's ability to run or to see is very well developed by the time they're 8," she says. "However, their ability to inhibit inappropriate responses is not something that's well developed until well into the 20s." The results also suggest it may be possible to identify adolescents at risk of problems related to poor executive function, says Joshua Gordon, director of the National Institute of Mental Health, which helped fund the study. These include "all kinds of disorders such as substance abuse, depression and schizophrenia," he says. The study is part of an effort to understand the brain changes underlying the development of executive function. It used a technology called diffusion imaging that reveals the fibers that make up the brain's information highways. © 2017 npr

Keyword: ADHD; Development of the Brain
Link ID: 23668 - Posted: 05.27.2017

By Julie Steenhuysen, U.S. deaths from Alzheimer's disease rose by more than 50 percent from 1999 to 2014, and rates are expected to continue to rise, reflecting the nation's aging population and increasing life expectancy, American researchers said on Thursday. In addition, a larger proportion of people with Alzheimer's are dying at home rather than a medical facility, according to the report released by the U.S. Centers for Disease Control and Prevention (CDC). Alzheimer’s is the sixth-leading cause of death in the United States, accounting for 3.6 percent of all deaths in 2014, the report said. Researchers have long predicted increased cases of Alzheimer's as more of the nation's baby boom generation passes the age of 65, putting them at higher risk for the age-related disease. The number of U.S. residents aged 65 and older living with Alzheimer's is expected to nearly triple to 13.8 million by 2050. There is no cure for Alzheimer's, a fatal brain disease that slowly robs its victims of the ability to think and care for themselves. According to the report by researchers at the CDC and Georgia State University, 93,541 people died from Alzheimer’s in the United States in 2014, a 54.5 percent increase compared with 1999. © 2017 Scientific American

Keyword: Alzheimers
Link ID: 23667 - Posted: 05.27.2017

By JUSTIN GILLIS Global warming caused by human emissions of greenhouse gases is having clear effects in the physical world: more heat waves, heavier rainstorms and higher sea levels, to cite a few. In recent years, though, social scientists have been wrestling with a murkier question: What will climate change mean for human welfare? Forecasts in this realm are tricky, necessarily based on a long chain of assumptions. Scientific papers have predicted effects as varied as a greater spread of tropical diseases, fewer deaths from cold weather and more from hot weather, and even bumpier rides on airplanes. Now comes another entry in this literature: a prediction that in a hotter world, people will get less sleep. In a paper published online Friday by the journal Science Advances, Nick Obradovich and colleagues predicted more restless nights, especially in the summer, as global temperatures rise. They found that the poor, who are less likely to have air-conditioning or be able to run it, as well as the elderly, who have more difficulty regulating their body temperature, would be hit hard. If global emissions are allowed to continue at a high level, the paper found, then additional nights of sleeplessness can be expected beyond what people normally experience. By 2050, for every 100 Americans, an extra six nights of sleeplessness can be expected every month, the researchers calculated. By 2099, that would more than double, to 14 additional nights of tossing and turning each month for every 100 people, in their estimation. Researchers have long known that being too hot or too cold at night can disturb anyone’s sleep, but nobody had thought to ask how that might affect people in a world grown hotter because of climate change. Dr. Obradovich is a political scientist who researches both the politics of climate change and its likely human impacts, holding appointments at Harvard and the Massachusetts Institute of Technology. He started the research while completing a doctoral degree at the University of California, San Diego. © 2017 The New York Times Company

Keyword: Sleep
Link ID: 23666 - Posted: 05.27.2017

Patients who are told their medication can have certain side-effects may report these symptoms more often than patients who aren't aware their treatment carries these risks, a study of popular cholesterol pills suggests. Researchers focused on what they dubbed the "nocebo" effect, or the potential for people to complain of treatment-related side-effects when they think they're taking a specific drug but are actually given a placebo, or dummy pill, without any active ingredients. "It has been recognized for many years that when patients are warned about possible adverse reactions to a drug, they are much more likely to complain of these side effects than when they are unaware of the possibility that such side-effects might occur," said senior study author Dr. Peter Sever, a researcher at Imperial College London. To test this "nocebo" effect, researchers first randomly assigned about 10,000 trial participants in the UK, Ireland and Scandinavia to take either a statin pill to lower cholesterol or a placebo, then followed people for around three years to see how often they complained of four known statin side-effects: Patients on statins and on placebo pills reported similar rates of muscle aches and erectile dysfunction, the study found. People taking placebo also reported higher rates of sleep difficulties than patients on statins. ©2017 CBC/Radio-Canada.

Keyword: Pain & Touch
Link ID: 23665 - Posted: 05.27.2017

Laura Sanders Nerve cells in a poorly understood part of the brain have the power to prompt voracious eating in already well-fed mice. Two to three seconds after blue light activated cells in the zona incerta, a patch of neurons just underneath the thalamus and above the hypothalamus, mice dropped everything and began shoveling food into their mouths. This dramatic response, described May 26 in Science, suggests a role in eating behavior for a part of the brain that hasn’t received much scrutiny. Scientists have previously proposed a range of jobs for the zona incerta, linking it to attention, movement and even posture. The new study suggests another job — controlling eating behavior, perhaps even in humans. “Being able to include the zona incerta in models of feeding is going to help us understand it better,” says study coauthor Anthony van den Pol, a neuroscientist at Yale University. The new results may also help explain why a small number of Parkinson’s disease patients develop binge-eating behavior when electrodes are implanted in their brains to ease their symptoms. Those electrodes may be stimulating zona incerta nerve cells, van den Pol suspects. He and his collaborator Xiaobing Zhang, also of Yale, studied the mice with a technique called optogenetics. Mice were engineered so that some nerve cells in the zona incerta fired off signals when hit with blue light. When the light activated these cells, the mice immediately found the food and began eating, the researchers reported. “It’s really quick,” van den Pol says. |© Society for Science & the Public 2000 - 2017.

Keyword: Obesity
Link ID: 23664 - Posted: 05.26.2017

Tonight, our economics correspondent, Paul Solman, explores another potential connection: whether there’s a link between risk-taking in leadership, testosterone and the perceptions around gender. It’s part of his ongoing weekly series, Making Sense, which airs every Thursday. MAN: Welcome, everybody, to this CNBC discussion on the future of banking at the World Economic Forum. PAUL SOLMAN: Financial CEOs at Davos this year. ANDREW LIVERIS, CEO, Dow Chemical: Good morning. Mr. President. Andrew Liveris, Dow Chemical. PAUL SOLMAN: Manufacturing CEOs at the White House. MARK FIELDS, CEO, Ford Motor Company: CEO of Ford. DOUGLAS OBERHELMAN, CEO, Caterpillar: Chairman of Caterpillar. PRESIDENT DONALD TRUMP: Some of the great people in the world of business. PAUL SOLMAN: CEOs now being mentioned as the next president. But, in 2017, the vast majority of CEOs, 96 percent of the Fortune 500, are still men. JENNIFER LERNER, Harvard University: I think that this is socially constructed. The differences between males and females on a wide variety of things are smaller than the differences within males and within females. PAUL SOLMAN: Psychologist Jennifer Lerner studies gender and leadership at Harvard. We will hear more from her in a bit. But, first, let’s check in with economist Andy Kim, who has made a career out of studying CEOs in intriguingly quirky ways. Now, a few of you might remember Andy Kim teaching me two years ago the equestrian dance move in the hyper-viral video sensation “Gangnam Style,” part of his offbeat research showing that CEOs who become visible, for whatever reason, can see their stock price rise irrationally. Well, he presented his brand-new research, not yet published, at this year’s annual Economics Convention. His latest hypothesis is as offbeat as ever. ANDY KIM: There is a strong linkage between your facial masculinity and your risk-taking behavior. PAUL SOLMAN: Kim is now exploring a possible link between CEO risk-taking and the hormone testosterone, which, starting with mid-19th century experiments on roosters, has been linked to male dominance and aggression throughout the animal kingdom. But how do you measure testosterone in CEOs with little time and probably even less inclination to give Korean assistant finance professors blood or saliva samples? One possible way, thought Kim, would be to study their facial bone structure. © 1996 - 2017 NewsHour Productions LLC.

Keyword: Sexual Behavior; Aggression
Link ID: 23663 - Posted: 05.26.2017

By Virginia Morell Baby marmosets learn to make their calls by trying to repeat their parents’ vocalizations, scientists report today in Current Biology. Humans were thought to be the only primate with vocal learning—the ability to hear a sound and repeat it, considered essential for speech. When our infants babble, they make apparently random sounds, which adults respond to with words or other sounds; the more this happens, the faster the baby learns to talk. To find out whether marmosets (Callithrix jacchus, pictured) do something similar, scientists played recordings of parental calls during a daily 30-minute session to three sets of newborn marmoset twins until they were 2 months old (roughly equivalent to a 2-year-old human). Baby marmosets make noisy guttural cries; adults respond with soft “phee” contact calls (listen to their calls below). The baby that consistently heard its parents respond to its cries learned to make the adult “phee” sound much faster than did its twin, the team found. It’s not yet known if this ability is limited to the marmosets; if so, the difference may be due to the highly social lives of these animals, where, like us, multiple relatives help care for babies. © 2017 American Association for the Advancement of Science

Keyword: Language; Animal Communication
Link ID: 23662 - Posted: 05.26.2017

Gary Stix Illiterate women in northern Indian learned how to read and write in Hindi for six months after which they had reached a level comparable to a first-grader. Credit: Max Planck Institute for Human Cognitive and Brain Sciences The brain did not evolve to read. It uses the neural muscle of pre-existing visual and language processing areas to enable us to take in works by Tolstoy and Tom Clancy. Reading, of course, begins in the first years of schooling, a time when these brain regions are still in development. What happens, though, when an adult starts learning after the age of 30? A study published May 24 in Science Advances turned up a few unexpected findings. In the report, a broad-ranging group of researchers—from universities in Germany, India and the Netherlands—taught reading to 21 women, all about 30 years of age from near the city of Lucknow in northern India, comparing them to a placebo group of nine women. The majority of those who learned to read could not recognize a word of Hindi at the beginning of the study. After six months, the group had reached a first-grade proficiency level. When the researchers conducted brain scans—using functional magnetic resonance imaging—they were startled. Areas deep below the wrinkled surface, the cortex, in the brains of the new learners had changed. Their results surprised them because most reading-related brain activity was thought to involve the cortex. The new research may overturn this presumption and may pertain pertain to child learners as well. After being filtered through the eyes, visual information may move first to evolutionarily ancient brain regions before being relayed to the visual and language areas of the cortex typically associated with reading. © 2017 Scientific American

Keyword: Language
Link ID: 23661 - Posted: 05.25.2017

James Gorman Darwin’s finches, those little birds in the Galápagos with beaks of different sizes and shapes, were instrumental in the development of the theory of evolution. Similar birds had large and small beaks and beaks in between, all related to what kinds of insects and seeds they ate. From one ancestor, it seemed, different adaptations to the environment had evolved, giving the birds that adapted a survival edge in a particular ecological niche — evolution by natural selection. Biologists who came later went on to identify the genetic changes that had produced different beak shapes. Now another group of finch-like birds has provided a similar example, but of a different kind of evolution, one driven not by the demands of the environment, but by the demands of female birds. Their preferences in color and pattern caused the evolution of different species of seedeater, all with the same behavior and diet, but with males that look different. That’s a process called sexual selection, which Darwin also wrote about. Leonardo Campagna, a researcher at Cornell University and the Cornell Lab of Ornithology, and a group of scientists from the United States and South America investigated nine species of southern capuchino seedeaters, doing full genomes for each one and reported their findings in Science Advances. They found that the DNA of all the species is remarkably similar, as are the birds. All the females look alike and all of the species feed on grass seeds plucked from grass stalks of living plants. Only the males are different. They have a wide variety of colorations and their courting songs are also distinct. Dr. Campagna and the other researchers found that differences between species DNA were all minimal, ranging from as little as 0.03 percent to as great as 0.3 percent. All the species showed variation in the same area, DNA that appeared to have a role in regulating genes for the pigment melanin. © 2017 The New York Times Company

Keyword: Evolution; Sexual Behavior
Link ID: 23660 - Posted: 05.25.2017

A cannabis compound has been proven for the first time to reduce the frequency of seizures in people with a rare, severe form of epilepsy, according to the results of a randomized trial. For years, parents have pointed to anecdotal benefits of cannabidiol (CBD), a compound in the marijuana plant that does not produce a high, saying it reduces seizures in treatment-resistant epilepsy. Now doctors have performed a randomized trial to show cause and effect, with the findings published in Wednesday's issue of the New England Journal of Medicine. To conduct the study, the researchers focused on Dravet syndrome, a rare form of epilepsy that begins in infancy and is linked to a particular mutation that often resists combinations of up to 10 conventional seizure medications. They enrolled 120 patients who ranged in age from 2.5 to 18 years. Sixty-one patients were randomly assigned to cannabidiol, and the 59 others to placebo. Neither the researchers nor the families knew who received the medication to prevent bias. All continued to take their existing medications. "The message is that cannabidiol does work in reducing convulsing seizures in children with Dravet syndrome," said lead author Dr. Orrin Devinksy, who is director of NYU's Langone Comprehensive Epilepsy Center. For those in the cannabinoid group, the median number of convulsive seizures per month dropped from 12.4 per month before treatment, to 5.9 seizures, the researchers reported. The placebo group, in comparison, only saw their convulsive seizures fall from 14.9 per month, to 14.1. ©2017 CBC/Radio-Canada.

Keyword: Epilepsy; Drug Abuse
Link ID: 23659 - Posted: 05.25.2017

By Meredith Wadman In 2013, a U.S. Department of Agriculture (USDA) inspector visited Thomas D. Morris, Inc., a Maryland animal breeder that sells to U.S. government and academic scientists. The inspector found numerous violations of the federal Animal Welfare Act (AWA), which sets standards for humane treatment. Fifteen unshorn sheep were penned in a sweltering building, while a group of calves and sheep had no shelter at all. A goat and a lamb were lame; another goat had an egg-sized swelling on its shoulder. In a subsequent letter, USDA warned the firm, which had 18 employees and $5 million in revenue in 2013, that future violations could result in fines or criminal prosecution. But it’s difficult for the public to know whether the company—which supplied animals used in at least 48 biomedical studies published since 2012—has kept a clean record. That’s because, on 3 February, USDA abruptly removed inspection reports, warning letters, and other documents on nearly 8000 animal facilities that the agency regulates, including Thomas D. Morris, from public databases. Some of the documents, which are maintained by USDA’s Animal and Plant Health Inspection Service (APHIS), have since been restored. But thousands remain hidden, and animal welfare advocates are now in court trying to force USDA to restore the records, and post all new documents, too. USDA officials said the removal was prompted by their commitment to “maintaining the privacy rights of individuals” identified in the documents, which animal rights groups, journalists, and others have regularly used to publicize the failings of AWA violators. And they say they are still reviewing the withdrawn documents, with an eye toward blacking out information that shouldn’t be public before reposting them. © 2017 American Association for the Advancement of Science.

Keyword: Animal Rights
Link ID: 23658 - Posted: 05.25.2017

By Andy Coghlan Burning the midnight oil may well burn out your brain. The brain cells that destroy and digest worn-out cells and debris go into overdrive in mice that are chronically sleep-deprived. In the short term, this might be beneficial – clearing potentially harmful debris and rebuilding worn circuitry might protect healthy brain connections. But it may cause harm in the long term, and could explain why a chronic lack of sleep puts people at risk of Alzheimer’s disease and other neurological disorders, says Michele Bellesi of the Marche Polytechnic University in Italy. Bellesi reached this conclusion after studying the effects of sleep deprivation in mice. His team compared the brains of mice that had either been allowed to sleep for as long as they wanted or had been kept awake for a further eight hours. Another group of mice were kept awake for five days in a row – mimicking the effects of chronic sleep loss. The team specifically looked at glial cells, which form the brain’s housekeeping system. Earlier research had found that a gene that regulates the activity of these cells is more active after a period of sleep deprivation. One type of glial cell, called an astrocyte, prunes unnecessary synapses in the brain to remodel its wiring. Another type, called a microglial cell, prowls the brain for damaged cells and debris. © Copyright New Scientist Ltd.

Keyword: Sleep; Glia
Link ID: 23657 - Posted: 05.24.2017

Susan Milius A question flamingo researchers get asked all the time — why the birds stand on one leg — may need rethinking. The bigger puzzle may be why flamingos bother standing on two. Balance aids built into the birds’ basic anatomy allow for a one-legged stance that demands little muscular effort, tests find. This stance is so exquisitely stable that a bird sways less to keep itself upright when it appears to be dozing than when it’s alert with eyes open, two Atlanta neuromechanists report May 24 in Biology Letters. “Most of us aren’t aware that we’re moving around all the time,” says Lena Ting of Emory University, who measures what’s called postural sway in standing people as well as in animals. Just keeping the human body vertical demands constant sensing and muscular correction for wavering. Even standing robots “are expending quite a bit of energy,” she says. That could have been the case for flamingos, she points out, since effort isn’t always visible. Translate that improbably long flamingo leg into human terms, and the visible part of the leg would be just the shin down. A flamingo’s hip and knee lie inside the bird’s body. Ting and Young-Hui Chang of the Georgia Institute of Technology tested balance in fluffy young Chilean flamingos coaxed onto a platform attached to an instrument that measures how much they sway. Keepers at Zoo Atlanta hand-rearing the test subjects let researchers visit after feeding time in hopes of catching youngsters inclined toward a nap — on one leg on a machine. “Patience,” Ting says, was the key to any success in this experiment. |© Society for Science & the Public 2000 - 2017

Keyword: Sleep
Link ID: 23656 - Posted: 05.24.2017

By James Hendrix Having witnessed the success of combination therapy in HIV, cancer and heart disease, the time has come for Alzheimer’s disease. At meetings convened by the Alzheimer’s Association and others, a consensus is emerging that the most effective Alzheimer’s treatments may be those that attack the disease on multiple fronts. Looking back for a moment… In the 1980s, the world faced a new, unknown virus. HIV/AIDS was spreading virtually unchecked, devastating millions of lives and spurring lively scientific debate. Today, an HIV diagnosis is no longer a death sentence. AIDS-related deaths have fallen by 45 percent since their peak in 2005 according to UNAIDS, a United Nations program for global action against the spread of the virus. As researchers learned more about HIV, they developed new classes of antiviral medications—each attacking the virus in a unique way. Physicians eventually began prescribing two or more of these drugs together and emerging scientific evidence started revealing the most effective combinations. Today, a powerful three-drug antiviral “cocktail” is allowing people with HIV to live long lives. Advances in understanding the progression of Alzheimer’s point to a number of underlying biological processes involved in the development of the disease. By leveraging this knowledge, we now have a singular opportunity to pioneer new approaches against Alzheimer’s, including combination therapies. © 2017 Scientific American,

Keyword: Alzheimers
Link ID: 23655 - Posted: 05.24.2017

By Diana Kwon Age as a state of mind is not just the stuff of birthday card clichés. In recent years, scientists have plumbed the molecular depths of the body and surfaced with tell-tale biomarkers of aging, some of which extend to the brain. Now, researchers are harnessing another tool, neuroimaging, to measure the organ’s age, and using that to predict how long a person will live. “People are searching for the tree rings of humans,” James Cole, a research associate at Imperial College London, told The Scientist. Cole and his colleagues recently devised their own technique of predicting the biological age of people’s brains using a combination of machine learning and magnetic resonance imaging (MRI) scans. In a study published last month (April 25) in Molecular Psychiatry, the team reported that this technique was able to predict mortality in humans—people with “older” brains, they found, had greater risk of dying before age 80. To create this marker of brain aging, the researchers first trained a machine-learning algorithm to analyze structural brain scans from a healthy reference sample containing 2,001 individuals between 18 and 90 years old. Then, they used this tool to predict brain age in the Lothian Birth Cohort, a group of 669 adults, all born in 1936. Based on the algorithm’s assessment, individuals who had brains that were “older” than their actual, chronological age also tended to have an increased risk of dying sooner and lower performance on various fitness measures, such as lung function, walking speed, and fluid intelligence. © 1986-2017 The Scientist

Keyword: Development of the Brain; Alzheimers
Link ID: 23654 - Posted: 05.24.2017

by Angela Chen@chengela What happens when you look up and see a ball headed toward you? Without even thinking about it, you flinch. That might be because our brains are constantly living our lives in fast-forward, playing out the action in our head before it happens. Humans have to navigate, and respond to, an environment that is always changing. Our brain compensates for this by constantly making predictions about what’s going to happen, says Mattias Ekman, a researcher at Radboud University Nijmegen in the Netherlands. We’ve known this for a while, but these predictions are usually associative. An example: if you see a hamburger, your brain might predict that there will be fries nearby. In a study published today in the journal Nature Communications, Ekman and other scientists focused instead on how the brain predicts motion. So they used brain scans to track what happened as participants observed a moving dot. First, 29 volunteers looked at a white dot the size of a ping-pong ball. The dot went from left to right and then reversed directions. The volunteers watched the dot for about five minutes while scientists scanned their brains with ultra-fast fMRI. This way, the researchers know what pattern of brain activity was activated in the visual cortex while they watched the dot. After these five minutes, the researchers showed only the beginning of the sequence to the volunteers. Here, the scans showed that the brain “autocompletes” the full sequence — and it does it at twice the rate of the actual event. So if a dot took two seconds to go across the screen, the brain predicted the entire sequence in one second. “You’re actually already trying to predict what’s going to happen,” says Ekman. “These predictions are hypothetical, so in a way you’re trying to generate new memories that match the future.” © 2017 Vox Media, Inc.

Keyword: Attention
Link ID: 23653 - Posted: 05.24.2017

By Bob Holmes As soon as I decided to write a book on the science of flavor, I knew I wanted to have myself genotyped. Every one of us, I learned through my preliminary research for Flavor: The Science of Our Most Neglected Sense, probably has a unique set of genes for taste and odor receptors. So each person lives in their own flavor world. I wanted to know what my genes said about my own world. Sure enough, there was a lesson there—but not the one I expected. Our senses of smell and taste detect chemicals in the environment as they bind to receptors on the olfactory epithelium in the nose or on taste buds studding the mouth. From these two inputs, plus a few others, the brain assembles the compound perception we call flavor. Taste is pretty simple: basically, one receptor type each for sweet, sour, salty, and the savory taste called umami, and a family of maybe 20 or more bitter receptors, each of which is sensitive to different chemicals. Smell, on the other hand, relies on more than 400 different odor receptor types, the largest gene family in the human genome. Variation in any of these genes—and, probably, many other genes that affect the pathways involved in taste or smell—should affect how we perceive the flavors of what we eat and drink. Hence the genotyping. One April morning a few years ago, I drooled into a vial and sent that DNA sample off to the Monell Chemical Senses Center in Philadelphia, home to what is likely the world’s biggest research group dedicated to the basic science of flavor. A few months later, I visited Monell to take a panel of perceptual tests and compare the results to my genetic profile. © 1986-2017 The Scientist

Keyword: Chemical Senses (Smell & Taste)
Link ID: 23652 - Posted: 05.24.2017

By Jack Turban We all know that person. Her Instagram is covered with more pictures of feline friends than human companions. Not an insignificant number of these pictures feature mini cat-sized lattes with the caption “Fluffy simply adores her morning coffee.” And let us not forget that the archetype of crazy cat man may be just as prevalent. When you look at these pictures, you probably wonder: is he like this because of the cat? Or does he have the cat because he is like this? It turns out that cats have a mischievous and somewhat dark reputation in neuroscience. There is research to suggest that a cat’s proximity to other mammals can cause them to behave strangely. This feline power has been attributed to a protozoan that lives in their stool, called Toxoplasma gondii (or Toxo for short). In one classic story, researchers showed that Toxo can travel into a rat’s brain and cause the rat to no longer avoid areas where cats live. The rats, in fact, become attracted to the smell of cat urine. Previously repulsed by the smell, these brain-infected rodents run joyously through urine-laden environments. They walk right through the cat’s trap, until their young rodent lives come to an end under a forceful paw. These same protozoans can affect the brains of humans. Immuno-compromised patients, like those with AIDS, can contract the infection from a litter box and develop dangerous brain abscesses. We treat these patients with powerful antibiotics and frequently recommend that they give away their cats. Pregnant women are also advised not to handle cat litter, as a fetus does not yet have the immune system needed to fight Toxo. Fetuses exposed to the protozoan can suffer from seizures, cognitive problems, and blindness. But what about your immunocompetent and decidedly non-pregnant Instagram friend; is she under the influence of this cat’s protozoan minion? . © 2017 Scientific American,

Keyword: Emotions
Link ID: 23651 - Posted: 05.24.2017

Carl Zimmer In a significant advance in the study of mental ability, a team of European and American scientists announced on Monday that they had identified 52 genes linked to intelligence in nearly 80,000 people. These genes do not determine intelligence, however. Their combined influence is minuscule, the researchers said, suggesting that thousands more are likely to be involved and still await discovery. Just as important, intelligence is profoundly shaped by the environment. Still, the findings could make it possible to begin new experiments into the biological basis of reasoning and problem-solving, experts said. They could even help researchers determine which interventions would be most effective for children struggling to learn. “This represents an enormous success,” said Paige Harden, a psychologist at the University of Texas, who was not involved in the study. For over a century, psychologists have studied intelligence by asking people questions. Their exams have evolved into batteries of tests, each probing a different mental ability, such as verbal reasoning or memorization. In a typical test, the tasks might include imagining an object rotating, picking out a shape to complete a figure, and then pressing a button as fast as possible whenever a particular type of word appears. Each test-taker may get varying scores for different abilities. But over all, these scores tend to hang together — people who score low on one measure tend to score low on the others, and vice versa. Psychologists sometimes refer to this similarity as general intelligence. It’s still not clear what in the brain accounts for intelligence. Neuroscientists have compared the brains of people with high and low test scores for clues, and they’ve found a few. Brain size explains a small part of the variation, for example, although there are plenty of people with small brains who score higher than others with bigger brains. © 2017 The New York Times Company

Keyword: Intelligence; Genes & Behavior
Link ID: 23650 - Posted: 05.23.2017

Nicola Davis Air pollution might be linked to poor sleep, say researchers looking into the impact of toxic air on our slumbers. The study explored the proportion of time participants spent asleep in bed at night compared with being awake – a measure known as sleep efficiency. The results reveal that greater exposure to nitrogen dioxide and small particulates known as PM 2.5s are linked with a greater chance of having low sleep efficiency. That, researchers say, could be down to the impact of air pollution on the body. “Your nose, your sinuses and the back of your throat can all be irritated by those pollutants so that can cause some sleep disruption as well as from breathing issues,” said Martha Billings, assistant professor of medicine at the University of Washington and co-author of the research. Billings added that pollutants entering the blood could have an effect on the brain and hence the regulation of breathing. The study, presented at the American Thoracic Society’s annual international conference, drew on air pollution data captured for nitrogen dioxide and PM2.5 levels over a five-year period in six US cities, including data captured near the homes of the 1,863 participants. The data was then used to provide estimates of pollution levels in the home. Researchers then captured data from medical-grade wearable devices worn by the participants on their wrists over a period of seven consecutive days to monitor fine movements while they slept – an approach that offers insights into how long each participant spent asleep or awake.

Keyword: Sleep; Neurotoxins
Link ID: 23649 - Posted: 05.23.2017