Links for Keyword: Autism

Follow us on Facebook and Twitter, or subscribe to our mailing list, to receive news updates. Learn more.


Links 1 - 20 of 679

By Sarah DeWeerdt, Young adults with autism have an unusual gait and problems with fine motor skills. Researchers presented the unpublished findings today at the 2017 Society for Neuroscience annual meeting in Washington, D.C. Motor problems such as clumsiness, toe-walking and altered gait are well documented in autism. But most studies have been limited to children or have included adults only as part of a broad age range. “Studies haven’t focused on just adults,” says Cortney Armitano, a graduate student in Steven Morrison’s lab at Old Dominion University in Norfolk, Virginia, who presented the work. The researchers looked at 20 young adults with autism between the ages of about 17 and 25, and 20 controls of about the same age range. They put these participants through a battery of standard tests of fine motor skills, balance and walking. When it comes to simple tasks—such as tapping a finger rapidly against a hard surface or standing still without swaying—those with autism perform just as well as controls do. But with activities that require more back-and-forth between the brain and the rest of the body, differences emerge. Adults with autism have slower reaction times compared with controls, measured by how fast they can click a computer mouse in response to seeing a button light up. They also have a weaker grip. © 2017 Scientific American,

Related chapters from BN8e: Chapter 5: Hormones and the Brain; Chapter 7: Life-Span Development of the Brain and Behavior
Related chapters from MM:Chapter 8: Hormones and Sex; Chapter 13: Memory, Learning, and Development
Link ID: 24329 - Posted: 11.15.2017

By Emily Willingham In their October 23 opinion piece “Why Does Autism Impact Boys More Often Than Girls?” Renee Joy Dufault and Steven G. Gilbert attempt to argue that autism diagnoses are on the increase because of inorganic mercury content in processed foods. Going a step further, they try to construct a rationale for blaming mercury for the perceived bias in autism rates among boys compared to girls. Using the example of one observational study reporting that mercury affects chemical tagging of a single gene in one cell type differently in boys and girls, the pair constructs a fragile chain of putative links between this single study and their claim that “inorganic mercury has been rising for many years in American blood.” The claims are problematic on many levels, but let’s just take a trip to the ground floor: evidence. First, mercury levels in “American blood” and urine are decreasing, not increasing. The latest analysis of values of inorganic mercury in urine and total blood mercury, published online September 6 in Environmental Toxicology and Pharmacology, finds that from 2005 to 2012 among all age groups, urinary inorganic mercury decreased. Total blood mercury, which includes organic (carbon-bound) and inorganic forms, also decreased in all age groups during that time. These conclusions are based on data from the U.S. Centers for Disease Control and Prevention (CDC) National Health and Nutrition Examination Survey (NHANES). Meanwhile, other CDC data indicate that autism prevalence has increased. The trends for autism prevalence and mercury levels in people living in the United States are in opposite directions. © 2017 Scientific American

Related chapters from BN8e: Chapter 5: Hormones and the Brain; Chapter 7: Life-Span Development of the Brain and Behavior
Related chapters from MM:Chapter 8: Hormones and Sex; Chapter 13: Memory, Learning, and Development
Link ID: 24287 - Posted: 11.04.2017

By Renee Joy Dufault, Steven G. Gilbert According to the CDC, autism prevalence continues to climb with 8 year old boys afflicted 4.5 times more often than girls. What makes matters worse is the fact that many boys with autism are also diagnosed with ADHD. These disorders severely impact the learning process in the classroom environment and lead to a lifelong economic burden both for the afflicted individual and society. Researchers estimated the annual economic burden in the U.S. for autism alone in 2015 was $162-$367 billion. If the autism prevalence continues to rise, researchers predict the costs will likely exceed those of ADHD and diabetes by 2025. It is imperative that families receive the support they need to prevent and manage these disorders which often occur in tandem. Proper management requires an understanding of the causes or “risk factors.” One cause associated with both disorders is exposure to heavy metals found in a poor diet. Heavy metal exposures may occur from the consumption of highly processed foods that contain ingredients with allowable concentrations of lead and inorganic mercury. Furthermore, these heavy metals may accumulate in blood especially when diet does not include adequate minerals to support the gene activity needed to metabolize and excrete them. Researchers led by Alabdali recently found higher blood lead and mercury levels are correlated with the severity of social and cognitive impairment in children with autism. What this means is parents will have more difficulty managing their child with autism and ADHD as the mercury and/or lead concentration levels rise in his blood. © 2017 Scientific American

Related chapters from BN8e: Chapter 12: Sex: Evolutionary, Hormonal, and Neural Bases; Chapter 7: Life-Span Development of the Brain and Behavior
Related chapters from MM:Chapter 8: Hormones and Sex; Chapter 13: Memory, Learning, and Development
Link ID: 24234 - Posted: 10.24.2017

By Rhianna Schmunk, CBC News Researchers from the University of British Columbia are retracting their scientific paper linking aluminum in vaccines to autism in mice, because one of the co-authors claims figures published in the study were deliberately altered before publication — an issue he says he realized after allegations of data manipulation surfaced online. The professor also told CBC News there's no way to know "why" or "how" the figures were allegedly contorted, as he claims original data cited in the study is inaccessible, which would be a contravention of the university's policy around scientific research. The paper looked at the effects of aluminum components in vaccines on immune response in a mouse's brain. It was published in the Journal of Inorganic Biochemistry on Sept. 5. Co-authored by Dr. Chris Shaw and Lucija Tomljenovic, it reported aluminum-triggered responses "consistent with those in autism." Shaw said he and Tomljenovic drew their conclusions from data that was "compiled" and "analyzed" for the paper, rather than raw data. However, subsequent scrutiny has raised questions about the validity of the data, with one doctor calling the paper "anti-vaccine pseudoscience." By the middle of September, commenters on PubPeer — a database where users can examine and comment on published scientific papers — pointed out that figures in the study appeared to have been altered, and in one case lifted directly from a 2014 study also authored by Shaw and Tomljenovic. ©2017 CBC/Radio-Canada.

Related chapters from BN8e: Chapter 5: Hormones and the Brain; Chapter 7: Life-Span Development of the Brain and Behavior
Related chapters from MM:Chapter 8: Hormones and Sex; Chapter 13: Memory, Learning, and Development
Link ID: 24199 - Posted: 10.16.2017

By Jessica Wright No one except Gregory Kapothanasis knows exactly what upset him today. On this hot day in July, he went to his day program for adults with developmental disabilities, as he has done without incident five days a week for the past four years. But then things unraveled. According to the program’s report, he grabbed a staff member’s arm hard enough to bruise it. Then, on the bus during the daily outing, he started screaming and hitting his seat. Now, several hours later, he is finally home, but there is a stranger in his living room. Bouncing from one couch to another, clutching a faded beige blanket stolen from his aunt’s dog, Kapothanasis still seems out of sorts. His mother, Irene — who has cared for him, with the help of home aides, for all of his 24 years — is playing over the day’s events, trying to figure out what triggered him. His outburst is disturbingly reminiscent of a difficult period that peaked six years ago but is uncharacteristic of the young man today. Kapothanasis loves interacting with other people, going to the beach and dining at DiMillo’s, a floating restaurant in a decommissioned car ferry in Portland, Maine. Kapothanasis has autism and speaks only a few words: He can’t explain what happened this morning. Did he have constipation and discomfort, as his doctor suggested? Did he get bored of the day’s program, causing him to act out? Had something occurred on the bus previously that made him fear that part of his day? All his mother can do is wonder — and try to make his evening better. © 2017 Scientific American,

Related chapters from BN8e: Chapter 5: Hormones and the Brain; Chapter 15: Emotions, Aggression, and Stress
Related chapters from MM:Chapter 8: Hormones and Sex; Chapter 11: Emotions, Aggression, and Stress
Link ID: 24168 - Posted: 10.10.2017

By Ingfei Chen, Spectrum In October 2010, Lisa and Eugene Jeffers learned that their daughter Jade, then nearly 2 and a half years old, has autism. The diagnosis felt like a double whammy. The parents were soon engulfed by stress from juggling Jade’s new therapy appointments and wrangling with their health insurance provider, but they now had an infant son to worry about, too. Autism runs in families. Would Bradley follow in his big sister’s footsteps? "We were on high alert,” Lisa Jeffers says. “There were times I would call his name, and he wouldn't look.” She says she couldn’t help but think: Is it because he's busy playing or because he has autism? In search of guidance, the parents signed Bradley up for a three-year study at the University of California, Davis (UC Davis) MIND Institute, a half-hour drive from their home near Sacramento. Researchers there wanted answers to some of the same questions the couple had: What are the odds that infants like Bradley—younger brothers or sisters of a child with autism—will be on the spectrum too? Could experts detect autism in these babies early on, so that they might benefit from early intervention? The infant-sibling study at UC Davis is one of more than 20 similar long-running investigations across the United States, Canada and United Kingdom, the first of which began around 2000. These ‘baby sib’ studies, which collectively have followed thousands of children, are among the most ambitious and expensive projects in autism research. Many of the scientists who run them anticipated that by tracking this special population, they would be able to spot signs of autism before age 1, and ultimately create an infant screen for the condition. © 2017 Scientific American

Related chapters from BN8e: Chapter 5: Hormones and the Brain; Chapter 7: Life-Span Development of the Brain and Behavior
Related chapters from MM:Chapter 8: Hormones and Sex; Chapter 13: Memory, Learning, and Development
Link ID: 23973 - Posted: 08.18.2017

Eric Deggans Like a lot of kids in high school, Sam worries that he doesn't fit in. "I'm a weirdo. That's what everyone says," declares the 18-year-old character at the center of Netflix's new dramatic comedy series Atypical. One reason Sam struggles to fit in: He has autism. As his character explains at the start of the first episode, sometimes he doesn't understand what people mean when they say things. And that makes him feel alone, even when he's not. Sam's family in Atypical is thrown in all sorts of new directions by his quest to date and find a girlfriend. Creator Robia Rashid says she wanted to tell a different kind of coming-of-age story, inspired by recent increases in autism diagnoses. "There are all these young people now who are on the spectrum, who know ... they're on the spectrum," she says. "And [they] are interested in things that every young person is interested in ... independence and finding connections and finding love." On-screen depictions of autism have come a long way since Dustin Hoffman's portrayal of Raymond Babbitt in the 1988 Oscar-winning film Rain Man. Hoffman's Babbitt focused obsessively on watching The People's Court and getting served maple syrup before his pancakes. He could also memorize half the names in a phone book in one reading and count the number of toothpicks on the floor, moments after they spilled out of the box. For Atypical, Rashid says she researched accounts of adults with autism, has several parents of autistic children working in her crew and hired an actor with autism to play a minor role. © 2017 npr

Related chapters from BN8e: Chapter 5: Hormones and the Brain; Chapter 7: Life-Span Development of the Brain and Behavior
Related chapters from MM:Chapter 8: Hormones and Sex; Chapter 13: Memory, Learning, and Development
Link ID: 23953 - Posted: 08.12.2017

Laura Sanders The company mice keep can change their behavior. In some ways, genetically normal littermates behave like mice that carry an autism-related mutation, despite not having the mutation themselves, scientists report. The results, published July 31 in eNeuro, suggest that the social environment influences behavior in complex and important ways, says neuroscientist Alice Luo Clayton of the Simons Foundation Autism Research Initiative in New York City. The finding comes from looking past the mutated mice to their nonmutated littermates, which are usually not a subject of scrutiny. “People almost never look at it from that direction,” says Clayton, who wasn’t involved in the study. Researchers initially planned to investigate the social behavior of mice that carried a mutation found in some people with autism. Studying nonmutated mice wasn’t part of the plan. “We stumbled into this,” says study coauthor Stéphane Baudouin, a neurobiologist at Cardiff University in Wales. Baudouin and colleagues studied groups of mice that had been genetically modified to lack neuroligin-3, a gene that is mutated in some people with autism. Without the gene, the mice didn’t have Neuroligin-3 in their brains, a protein that helps nerve cells communicate. Along with other behavioral quirks, these mice didn’t show interest in sniffing other mice, as expected. But Baudouin noticed that the behavior of the nonmutated control mice who lived with the neuroligin-3 mutants also seemed off. He suspected that the behavior of the mutated mice might be to blame. |© Society for Science & the Public 2000 - 2017.

Related chapters from BN8e: Chapter 7: Life-Span Development of the Brain and Behavior; Chapter 5: Hormones and the Brain
Related chapters from MM:Chapter 13: Memory, Learning, and Development; Chapter 8: Hormones and Sex
Link ID: 23905 - Posted: 08.01.2017

By Daisy Yuhas, When the shy, dark-haired boy met with clinicians for a full psychiatric evaluation two years ago, almost everything about him pointed to autism. W. had not spoken his first words until age 2. He was at least 4 before he could form sentences. As he got older, he was unable to make friends. He struggled to accept changes to his routine and maintain eye contact. And despite having an average intelligence quotient, he was unusually attached to objects; at age 11, he still lugged a bag of stuffed animals with him everywhere he went. But something else was clearly at work, too. “He had these things that he would call day dreams,” recalls Jennifer Foss-Feig, assistant professor of psychiatry at the Icahn School of Medicine at Mount Sinai in New York. When she evaluated W., she noticed that he would often gaze into an empty corner of the room—particularly when he seemed to suspect that she wasn’t paying attention to him. (For privacy reasons, Foss-Feig declined to reveal anything but the child’s first initial.) Occasionally, he would speak to that space, as though someone else were there. His parents, she recalls, were worried. They explained to Foss-Feig that their son had what he called an “imaginary family.” But W.’s invisible playmates weren’t of the usual harmless variety that many children have; they seemed to be a dangerous distraction both at home and at school. On one occasion, he wandered through a busy parking lot, seemingly oblivious to the oncoming traffic. © 2017 Scientific America

Related chapters from BN8e: Chapter 16: Psychopathology: Biological Basis of Behavior Disorders; Chapter 5: Hormones and the Brain
Related chapters from MM:Chapter 12: Psychopathology: The Biology of Behavioral Disorders; Chapter 8: Hormones and Sex
Link ID: 23874 - Posted: 07.25.2017

By PAM BELLUCK How we look at other people’s faces is strongly influenced by our genes, scientists have found in new research that may be especially important for understanding autism because it suggests that people are born with neurological differences that affect how they develop socially. The study, published on Wednesday in the journal Nature, adds new pieces to the nature-versus-nurture puzzle, suggesting that genetics underlie how children seek out formative social experiences like making eye contact or observing facial expressions. Experts said the study may also provide a road map for scientists searching for genes linked to autism. “These are very convincing findings, novel findings,” said Charles A. Nelson III, a professor of pediatrics and neuroscience at Harvard Medical School and Boston Children’s Hospital, who was not involved in the research. “They seem to suggest that there’s a genetic underpinning that leads to different patterns of brain development, that leads some kids to develop autism.” Dr. Nelson, an expert in child development and autism who was an independent reviewer of the study for Nature, said that while autism is known to have a genetic basis, how specific genes influence autism’s development remains undetermined. The study provides detailed data on how children look at faces, including which features they focus on and when they move their eyes from one place to another. The information, Dr. Nelson said, could help scientists “work out the circuitry that controls these eye movements, and then we ought to be able to work out which genes are being expressed in that circuit.” “That would be a big advance in autism,” he said. In the study, scientists tracked the eye movements of 338 toddlers while they watched videos of motherly women as well as of children playing in a day care center. The toddlers, 18 months to 24 months old, included 250 children who were developing normally (41 pairs of identical twins, 42 pairs of nonidentical twins and 84 children unrelated to each other). There were also 88 children with autism. © 2017 The New York Times Company

Related chapters from BN8e: Chapter 5: Hormones and the Brain; Chapter 7: Life-Span Development of the Brain and Behavior
Related chapters from MM:Chapter 8: Hormones and Sex; Chapter 13: Memory, Learning, and Development
Link ID: 23832 - Posted: 07.13.2017

By Jessica Wright, Spectrum on July 11, 2017 Treatment with the hormone oxytocin improves social skills in some children with autism, suggest results from a small clinical trial. The results appeared today in the Proceedings of the National Academy of Sciences1. Oxytocin, dubbed the ‘love hormone,’ enhances social behavior in animals. This effect makes it attractive as a potential autism treatment. But studies in people have been inconsistent: Some small trials have shown that the hormone improves social skills in people with autism, and others have shown no benefit. This may be because only a subset of people with autism respond to the treatment. In the new study, researchers tried to identify this subset. The same team showed in 2014 that children with relatively high blood levels of oxytocin have better social skills than do those with low levels2. In their new work, the researchers examined whether oxytocin levels in children with autism alter the children’s response to treatment with the hormone. They found that low levels of the hormone prior to treatment are associated with the most improvement in social skills. “We need to be thinking about a precision-medicine approach for autism,” says Karen Parker, associate professor of psychiatry at Stanford University in California, who co-led the study. “There’s been a reasonable number of failed [oxytocin] trials, and the question is: Could they have failed because all of the kids, by blind, dumb luck, had really high baseline oxytocin levels?” The study marks the first successful attempt to find a biological marker that predicts response to the therapy. © 2017 Scientific American,

Related chapters from BN8e: Chapter 5: Hormones and the Brain; Chapter 7: Life-Span Development of the Brain and Behavior
Related chapters from MM:Chapter 8: Hormones and Sex; Chapter 13: Memory, Learning, and Development
Link ID: 23826 - Posted: 07.12.2017

By Nicholette Zeliadt Researchers have known that genes contribute to autism since the 1970s, when a team found that identical twins often share the condition. Since then, scientists have been racking up potential genetic culprits in autism, a process that DNA-decoding technologies have accelerated in the past decade. As this work has progressed, scientists have unearthed a variety of types of genetic changes that can underlie autism. The more scientists dig into DNA, the more intricate its contribution to autism seems to be. How do researchers know genes contribute to autism? Since the first autism twin study in 1977, several teams have compared autism rates in twins and shown that autism is highly heritable. When one identical twin has autism, there is about an 80 percent chance that the other twin has it, too. The corresponding rate for fraternal twins is around 40 percent. However, genetics clearly does not account for all autism risk. Environmental factors also contribute to the condition, although researchers disagree on the relative contributions of genes and environment. Some environmental risk factors for autism, such as exposure to a maternal immune response in the womb or complications during birth, may work with genetic factors to produce autism or intensify its features. Is there such a thing as an autism gene? Not really. There are several conditions associated with autism that stem from mutations in a single gene, including fragile X and Rett syndromes. But less than 1 percent of non-syndromic cases of autism stem from mutations in any single gene. © 1996-2017 The Washington Post

Related chapters from BN8e: Chapter 5: Hormones and the Brain; Chapter 7: Life-Span Development of the Brain and Behavior
Related chapters from MM:Chapter 8: Hormones and Sex; Chapter 13: Memory, Learning, and Development
Link ID: 23794 - Posted: 07.01.2017

By Lenny Bernstein A mother’s fever during pregnancy, especially in the second trimester, is associated with a higher risk that her child will be diagnosed with autism spectrum disorder, researchers reported Tuesday. Three or more fevers after 12 weeks of gestation may be linked to an even greater risk of the condition. The study by researchers at Columbia University’s Mailman School of Public Health adds support for the theory that infectious agents that trigger a pregnant woman’s immune response may disrupt a fetus’s brain development and lead to disorders such as autism. “Fever seems to be the driving force here,” not the infection itself, said Mady Hornig, director of translational research at the school’s Center for Infection and Immunity. Fever can be part of the body’s immune response to an infection, and molecules produced by a mother’s immune system may be crossing into the baby’s neurological system at a critical time, she said. The research, published in the journal Molecular Psychiatry, comes at a time when the scientifically discredited theory that some childhood vaccines cause autism has gained new attention. President Trump has promoted this myth, energizing some anti-vaccine groups. Some families say that their children developed autism after vaccinations. The timing is a coincidence, however; symptoms of autism typically become clear at around two years of age, which happens to be the age when children get certain vaccines. © 1996-2017 The Washington Post

Related chapters from BN8e: Chapter 7: Life-Span Development of the Brain and Behavior; Chapter 5: Hormones and the Brain
Related chapters from MM:Chapter 13: Memory, Learning, and Development; Chapter 8: Hormones and Sex
Link ID: 23737 - Posted: 06.13.2017

By RICHARD SANDOMIR Isabelle Rapin, a Swiss-born child neurologist who helped establish autism’s biological underpinnings and advanced the idea that autism was part of a broad spectrum of disorders, died on May 24 in Rhinebeck, N.Y. She was 89. The cause was pneumonia, said her daughter Anne Louise Oaklander, who is also a neurologist. “Calling her one of the founding mothers of autism is very appropriate,” said Dr. Thomas Frazier II, a clinical psychologist and chief science officer of Autism Speaks, an advocacy group for people with autism and their families. “With the gravity she carried, she moved us into a modern understanding of autism.” Dr. Rapin (pronounced RAP-in) taught at the Albert Einstein College of Medicine in the Bronx and over a half-century there built a reputation for rigorous scholarship. She retired in 2012 but continued working at her office and writing journal papers. The neurologist Oliver Sacks, a close friend and colleague, called her his “scientific conscience.” In his autobiography, “On the Move: A Life” (2015), Dr. Sacks wrote: “Isabelle would never permit me, any more than she permitted herself, any loose, exaggerated, uncorroborated statements. ‘Give me the evidence,’ she always says.” Dr. Rapin’s focus on autism evolved from her studies of communications and metabolic disorders that cause mental disabilities and diminish children’s ability to navigate the world. For decades she treated deaf children, whose difficulties in communicating limited their path to excelling in school and forced some into institutions. “Communications disorders were the overarching theme of my mother’s career,” Dr. Oaklander said in an interview. In a short biography written for the Journal of Child Neurology in 2001, Dr. Rapin recalled a critical moment in her work on autism. “After evaluating hundreds of autistic children,” she wrote, “I became convinced that the report by one-third of parents of autistic preschoolers, of a very early language and behavioral regression, is real and deserving of biologic investigation.” © 2017 The New York Times Company

Related chapters from BN8e: Chapter 5: Hormones and the Brain; Chapter 7: Life-Span Development of the Brain and Behavior
Related chapters from MM:Chapter 8: Hormones and Sex; Chapter 13: Memory, Learning, and Development
Link ID: 23727 - Posted: 06.12.2017

By Anil Ananthaswamy A machine-learning algorithm has analysed brain scans of 6-month-old children and predicted with near-certainty whether they will show signs of autism when they reach the age of 2. The finding means we may soon be able to intervene before symptoms appear, although whether that would be desirable is a controversial issue. “We have been trying to identify autism as early as possible, most importantly before the actual behavioural symptoms of autism appear,” says team member Robert Emerson of the University of North Carolina at Chapel Hill. Previous work has identified that bundles of nerve fibres in the brain develop differently in infants with older siblings with autism from how they do in infants without this familial risk factor. The changes in these white matter tracts in the brain are visible at 6 months. For the new study, Emerson and his team did fMRI brain scans of 59 sleeping infants, all of whom were aged 6 months and had older siblings with autism, which means they are more likely to develop autism themselves. The scans collected data from 230 brain regions, showing the 26,335 connections between them. When the team followed-up with the children at the age of 2, 11 had been diagnosed with an autism-like condition. The team used the brain scans from when the babies were 6 months old and behavioural data from when the children were 2 years old to train a machine-learning program to identify any brain connectivity patterns that might be linked to later signs of autism, such as repetitive behaviour, difficulties with language, or problems relating socially to others. © Copyright New Scientist Ltd.

Related chapters from BN8e: Chapter 5: Hormones and the Brain; Chapter 7: Life-Span Development of the Brain and Behavior
Related chapters from MM:Chapter 8: Hormones and Sex; Chapter 13: Memory, Learning, and Development
Link ID: 23722 - Posted: 06.08.2017

By Nicholette Zeliadt, For 6-year-old Macey, lunchtime at school is not so much a break from reading and math as it is an hour rife with frustration. Here’s how Macey’s mother, Victoria, describes Macey’s typical lunch break: In her special-education classroom an hour north of San Francisco, Macey’s classmates gather at a big square table, chattering away and snatching one another’s food. Macey, meanwhile, is sequestered away at a small white table in a corner, facing a bookshelf. She grabs the handle of a spoon using the palm of her right hand, awkwardly scoops up rice and spills it onto her lap. She wants to be at the big table with her peers, but she sits with an aide away from the other children to minimize distractions while she eats. (Victoria requested that we use her and Macey’s first names only, to protect their privacy.) After lunch, the children spill out onto the playground. Macey, wearing a helmet, trails behind, holding her aide’s hand. She can walk, but she often trips on uneven surfaces and falls over. She tends to misjudge heights, and once pulled a muscle while climbing on playground equipment. When she was 3, she tripped and fell headfirst out of a sandbox, scraping her face, chipping one tooth and dislodging another. Macey has little trouble moving around the house because it has few stairs and her mother never changes the layout of the rooms. Victoria’s biggest concern is that Macey’s movement troubles interfere with her social life. © 2017 Scientific American,

Related chapters from BN8e: Chapter 7: Life-Span Development of the Brain and Behavior; Chapter 11: Motor Control and Plasticity
Related chapters from MM:Chapter 13: Memory, Learning, and Development; Chapter 5: The Sensorimotor System
Link ID: 23713 - Posted: 06.06.2017

Baby teeth from children with autism contain more toxic lead and less of the essential nutrients zinc and manganese, compared to teeth from children without autism, according to an innovative study funded by the National Institute of Environmental Health Sciences (NIEHS), part of the National Institutes of Health. The researchers studied twins to control genetic influences and focus on possible environmental contributors to the disease. The findings, published June 1 in the journal Nature Communications, suggest that differences in early-life exposure to metals, or more importantly how a child’s body processes them, may affect the risk of autism. The differences in metal uptake between children with and without autism were especially notable during the months just before and after the children were born. The scientists determined this by using lasers to map the growth rings in baby teeth generated during different developmental periods. The researchers observed higher levels of lead in children with autism throughout development, with the greatest disparity observed during the period following birth. They also observed lower uptake of manganese in children with autism, both before and after birth. The pattern was more complex for zinc. Children with autism had lower zinc levels earlier in the womb, but these levels then increased after birth, compared to children without autism. The researchers note that replication in larger studies is needed to confirm the connection between metal uptake and autism.

Related chapters from BN8e: Chapter 7: Life-Span Development of the Brain and Behavior; Chapter 5: Hormones and the Brain
Related chapters from MM:Chapter 13: Memory, Learning, and Development; Chapter 8: Hormones and Sex
Link ID: 23698 - Posted: 06.02.2017

By Hannah Furfaro, Children whose fathers are highly intelligent are at a 31 percent higher risk of autism than those whose fathers are of average intelligence, according to unpublished results presented today at the 2017 International Meeting for Autism Research in San Francisco, California. The work supports observations that date back to the 1940s, when Leo Kanner and Hans Asperger noted in separate reports that the fathers of children with autism tended to be highly intelligent and in several cases worked in technical fields. A 2012 study also showed that children from regions in the Netherlands where high-tech jobs are prevalent are more likely to have autism than those who live in other regions. In the new study, lead investigator Renee Gardner, assistant professor at Karolinska Institutet in Stockholm, set out to investigate whether the historical lore has validity. She and her colleagues matched medical records for 309,803 children whose fathers were conscripted into the Swedish military with their father’s scores on the technical portion of the Swedish intelligence quotient (IQ) test. They found a one-third higher risk of autism in children whose fathers’ IQ scores are 111 or higher than in those whose fathers’ scores cluster around 100. The researchers controlled for possible confounding factors such as families’ socioeconomic status and parental age, education level and history of inpatient psychiatric treatment. IQ indicators: They found the opposite relationship between a father’s IQ and his child’s chances of having intellectual disability or attention deficit hyperactivity disorder (ADHD). In particular, children of men with an IQ of 75 or below had a four-and-a-half times higher risk of intellectual disability. The chance of ADHD was 65 percent higher than average for children whose fathers had an IQ in that low range. © 2017 Scientific American

Related chapters from BN8e: Chapter 7: Life-Span Development of the Brain and Behavior; Chapter 5: Hormones and the Brain
Related chapters from MM:Chapter 13: Memory, Learning, and Development; Chapter 8: Hormones and Sex
Link ID: 23614 - Posted: 05.15.2017

Amy Maxmen Cells that prune connections between neurons in babies’ brains as they grow are thought to have a role in autism spectrum disorder. Now, a study suggests that the number and behaviour of these cells — called microglia — vary in boys and girls, a finding that could help to explain why many more boys are diagnosed with autism and related disorders. Donna Werling, a neurogeneticist at the University of California, San Francisco, and her colleagues found that genes associated with microglia are more active in male brains than in female brains in the months before birth. “This suggests there is something fundamentally different about male and female brain development,” she says. The research, to be presented on 13 May at the International Meeting for Autism Research in San Francisco, California, is still preliminary. Very little is known about how microglial trimming behaviour affects brain development. But the study by Werling’s team “is the kind of work that makes you say ‘Wow, this is really interesting, and we should take it seriously’”, says Kevin Pelphrey, a neuroscientist at Yale School of Medicine in New Haven, Connecticut. There are two to five times many males with autism as females. Although the disorder — whose cause remains elusive — is widely acknowledged to be underdiagnosed in girls, psychiatrists agree that there is a significant disparity between the numbers of male and female cases. It suggests that biological differences between the sexes are involved. © 2017 Macmillan Publishers Limited,

Related chapters from BN8e: Chapter 7: Life-Span Development of the Brain and Behavior; Chapter 12: Sex: Evolutionary, Hormonal, and Neural Bases
Related chapters from MM:Chapter 13: Memory, Learning, and Development; Chapter 8: Hormones and Sex
Link ID: 23605 - Posted: 05.12.2017

By Ann Griswold, Much of what Stephen Shore knows about romance he learned in the self-help aisle of a bookstore near the Amherst campus of the University of Massachusetts. In college, Shore, who has autism, began to wonder if women spoke a language he didn’t understand. Maybe that would explain the perplexing behavior of a former massage student with whom he traded shiatsu sessions, who eventually told him she had been hoping for more than a back rub. Or the woman he met in class one summer, who had assumed she was his girlfriend because they spent most nights cooking, and often shared a bed. Looking back, other people’s signs of romantic interest seemed to almost always get lost in translation. Shore turned to the self-help shelves to learn the unspoken language of love: He pored over chapters on body language, facial expression and nonverbal communication. By the time he met Yi Liu, a woman in his graduate-level music theory class at Boston University, he was better prepared. On a summer day in 1989, as they sat side by side on the beach, Liu leaned over and kissed Shore on the lips. She embraced him, then held his hand as they looked out at the sea. “Based on my research,” he says, “I knew that if a woman hugs you, kisses you and holds your hand all at the same time, she wants to be your girlfriend; you better have an answer right away.” The couple married a year later, on a sunny afternoon in June 1990. Shore was diagnosed with autism around age 3, about a year after he lost his few words and began throwing tantrums. Doctors advised his parents to place him in an institution. Instead, they immersed him in music and movement activities, and imitated his sounds and behavior to help him become aware of himself and others. He began speaking again at 4 and eventually recovered some of the social skills he had lost. © 2017 Scientific American

Related chapters from BN8e: Chapter 5: Hormones and the Brain; Chapter 7: Life-Span Development of the Brain and Behavior
Related chapters from MM:Chapter 8: Hormones and Sex; Chapter 13: Memory, Learning, and Development
Link ID: 23586 - Posted: 05.06.2017